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Interaction of a fluid flow with a deformable porous solid.

Summary. A continuum model is presented for fluid flow in a unsat-
urated deformable porous medium, where the fluid may undergo phase
transitions with large changes of the specific volume. Typically, such
problems arise in modeling water-ice-solid interactions in construction
materials such as concrete, for example. The system of equations is
derived from the conservation principles for mass, momentum, and en-
ergy, and from the Clausius-Duhem inequality for entropy. It couples
the evolution of the displacement in the porous solid, of the capillary
pressure, of the absolute temperature, and of the phase fraction. Math-
ematical results are proved under the additional hypothesis that inertia
effects and shear stresses can be neglected. For the resulting nonlinear
system of two PDEs, one ODE, and one ordinary differential inclu-
sion with natural initial and boundary conditions, existence of global
in time solutions is proved by means of cut-off techniques and a series
of estimates independent of the cut-off parameters.
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Interakce proud́ıćı kapaliny a deformovatelného porézńıho
prostřed́ı.

Souhrn. Je odvozen spojitý model pro proud́ıćı kapalinu v nenasyce-
ném deformovatelném porézńım prostřed́ıv situaci, kdy kapalina může
vlivem fázového přechodu měnit skupenstv́ı z kapalného na pevné a
naopak při velké změně specifického objemu. Podobné problémy ty-
picky vznikaj́ı při matematickém modelováńı jevǔ souvisej́ıćıch s prosa-
kováńım a zamrzáńım vody ve stavebńıch materiálech, např́ıklad v be-
tonu. Soustava bilančńıch rovnic je odvozena ze zákon̊u zachováńı
hmoty, hybnosti a energie a z Clausiovy-Duhemovy nerovnosti pro
entropii a popisuje vzájemnou interakci veličin jako jsou deformace
porézńıho materiálu, kapilárńı tlak, absolutńı teplota a fázové proměn-
né. Matematické výsledky jsou dokázány za dodatečného předpokladu,
že setrvačné jevy a smyková napět́ı maj́ı zanedbatelný vliv na dy-
namiku procesu. Pro výslednou nelineárńı soustavu dvou parciálńıch
diferenciálńıch rovnic, jedné obyčejné diferenciálńı rovnice a jedné dife-
renciálńı inkluze s přirozenými počátečńımi a okrajovými podmı́nkami
je dokázána existence globálńıho řešeńı metodou ořezáńı rychle ros-
toućıch nelinearit a séríı odhad̊u nezávislých na parametrech ořezáńı.
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Introduction

A model for fluid flow in partially saturated porous media with ther-
momechanical interaction was proposed and analyzed in [1, 3, 4]. We
extend the model by including the effects of freezing and melting of the
fluid in the pores. Typical examples, in which such situations arise, are
related to groundwater flows and to the freezing-melting cycles of water
sucked into the pores of concrete. Notice that the latter process forms
one of the main reasons for the degradation of concrete in buildings,
bridges, and roads. However, many of the governing effects in concrete
like the multi-component microstructure, the breaking of pores, chem-
ical reactions, and hysteresis of the saturation-pressure curves, and the
occurrence of shear stresses, are still neglected in our model.

The modeling idea is the following. The pores in the matrix material
contain a mixture of H2O and gas, and H2O itself is a mixture of the
liquid (water) and the solid phase (ice). That is, in addition to the other
physical quantities like capillary pressure, displacement, and absolute
temperature, we need to consider the evolution of a phase parameter
χ representing the relative proportion of water in the H2O part and
its influence on pressure changes due to the different mass densities of
water and ice. Unlike in [1, 3, 4, 14], we do not consider hysteresis in
the model. We believe that the mathematical results can be extended
to the case of capillary hysteresis as in [1, 3, 4]. In our model without
shear stresses, elastoplastic hysteresis effects as in [1, 3, 14] cannot
occur.

As it will be detailed below, we assume that the deformations are small,
so that div u is the relative local volume change, where u represents the
displacement vector. Moreover, we assume that the volume of the ma-
trix material does not change during the process, and thus the volume
and mass balance equations with Darcy’s law for the water flux lead
to a nonlinear degenerate parabolic equation for the capillary pressure,
see (2.4). In the equation of motion, we take into account the pressure
components due to phase transition and temperature changes, and we
further simplify the system in order to make it mathematically tractable
by assuming that the process is quasistatic and the shear stresses are
negligible. The problem of existence of solutions for the coupled system
without this assumption is open and, probably, very challenging. Fi-
nally, we use the balance of internal energy and the entropy inequality
to derive the dynamics for absolute temperature and phases; they turn
out to be, respectively, a parabolic equation for the temperature with
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highly nonlinear right-hand side (quadratic in the derivatives) and an
ordinary differential inclusion for the phase parameter χ .

Finally, let us note that – in order to model the freezing and melting
phenomena in the pores – we use some ideas from publications on
freezing and melting in containers filled with water with rigid, elastic,
or elastoplastic boundaries (cf. [8, 9, 10, 11, 12]). It was shown there
how important it is to account for the difference in specific volumes of
water and of ice.

There is an abundant classical mathematical literature on phase transi-
tion processes, see, e. g., the monographs [2], [5], [15], and the references
therein. It seems, however, that only few publications take into account
the fact that the mass densities and specific volumes of the phases dif-
fer. In [6], the authors proposed to interpret a phase transition process
in terms of a balance equation for macroscopic motions, and to include
the possibility of voids. Well-posedness of an initial-boundary value
problem associated with the resulting PDE system was proved there,
and the case of two different densities %1 and %2 for the two substances
undergoing phase transitions was pursued in [7].

1 The model

We consider a connected domain Ω ⊂ R3 filled by a deformable matrix
material with pores containing a mixture of H2O and gas, where we
assume that H2O may appear in one of the two phases: water or ice.
We also assume that the volume of the solid matrix remains constant
during the process, and let cs ∈ (0, 1) be the relative proportion of
solid in the total reference volume. We denote, for x ∈ Ω and time
t ∈ [0, T ] ,

W (x, t) ∈ [0, 1] ... relative proportion of H2O in the total pore vol-
ume;

A(x, t) ∈ [0, 1] ... relative proportion of gas in the total pore volume;

χ(x, t) ∈ [0, 1] ... relative proportion of water in the H2O part;

ξ(x, t) ... mass flux vector;

p(x, t) ... capillary pressure;

u(x, t) ... displacement vector;
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σ(x, t) ... stress tensor;

θ(x, t) ... absolute temperature.

Then χW represents the relative proportion of water in the total pore
volume, and (1− χ)W represents the relative proportion of ice in the
total pore volume.

We assume that the deformations are small, so that div u is the relative
local volume change. By hypothesis, the volume of the matrix material
does not change, so that the volume balance reads

W (x, t) + A(x, t) + cs = 1 + div u(x, t). (1.1)

For A , we assume the functional relation

A = 1− cs − ϕ(p), (1.2)

where ϕ is an increasing function that satisfies ϕ(−∞) = ϕ[ ∈ (0, 1)
and ϕ(∞) = 1− cs , ϕ[ + cs < 1. This means that the porous medium
cannot be made completely dry by thermomechanical processes alone.
Combining (1.1) with (1.2), we obtain that

W = ϕ(p) + div u. (1.3)

2 Mass balance

Consider an arbitrary control volume V ⊂ Ω. The water content in
V is given by the integral

∫
V

ρLχW dx , where ρL is the water mass
density, and the ice content is

∫
V

ρS(1− χ)W dx , where ρS is the ice
mass density. The mass conservation principle then reads

d
dt

∫
V

ρLχW dx +
∫

∂V

ξ · n ds(x) = − d
dt

∫
V

ρS(1− χ)W dx, (2.1)

where n the unit outward normal vector to ∂V . In differential form,
we obtain

ρL(χW )t + div ξ = −ρS((1− χ)W )t. (2.2)

The right-hand side of (2.2) is the positive or negative liquid water
source due to the solidification or melting of the ice. We assume the
water flux in the form of the Darcy law

ξ = −µ(p)∇p, (2.3)
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with a proportionality factor µ(p) > 0. This, (1.3), and (2.2), yield the
equation(

(χ+ρ∗(1−χ))(ϕ(p) + div u)
)
t
− 1

ρL
div (µ(p)∇p) = 0, (2.4)

with ρ∗ = ρS/ρL ∈ (0, 1) .

3 Momentum balance

The equation of motion is considered in the form

ρMutt − div σ = g, (3.1)

where ρM is the mass density of the matrix material, σ is the stress
tensor, and g is a volume force acting on the body (e. g., gravity). For
σ , we prescribe the constitutive equation

σ = Bεt + Aε +
(
(χ+ρ∗(1−χ))(λ div u− p)− β(θ − θc)

)
δ, (3.2)

where ε = ∇su := 1
2 (∇u + ∇uT ) is the small strain tensor, δ is the

Kronecker tensor, B is a symmetric positive definite viscosity tensor,
A is the symmetric positive definite elasticity tensor of the matrix
material, λ > 0 is the bulk elasticity modulus of water, θ > 0 is the
absolute temperature, θc > 0 is a fixed referential temperature, and
β ∈ R is the relative solid-liquid thermal expansion coefficient. The
term (χ+ρ∗(1−χ))(λ div u − p) accounts for the pressure component
due to the phase transition.

4 Energy and entropy balance

We have to derive formulas for the densities of internal energy U and
entropy S such that the energy balance balance equation and the
Clausius–Duhem inequality hold for all processes. Let q be the heat
flux vector, and let V ⊂ Ω be again an arbitrary control volume. The
total internal energy in V is

∫
V

U dx , and the total mechanical power
Q(V ) supplied to V equals

Q(V ) =
∫

V

σ : εt dx−
∫

∂V

1
ρL

p ξ · n ds(x),
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where ξ is the fluid mass flux (2.3). We thus have that

d
dt

∫
V

U dx+
∫

∂V

q ·n ds(x) =
∫

V

σ : εt dx−
∫

∂V

1
ρL

p ξ ·n ds(x). (4.1)

Again, by the Gauss formula, we obtain the energy balance equation
in differential form, namely

Ut + div q = σ : εt −
1
ρL

div (pξ). (4.2)

The internal energy and entropy densities U and S , as well as the heat
flux vector q , have to be chosen in order to satisfy, for all processes,
the Clausius–Duhem inequality

St + div
(q

θ

)
≥ 0, (4.3)

or, taking into account the energy balance (4.2),

Ut − θSt +
q · ∇θ

θ
≤ σ : εt −

1
ρL

div (pξ). (4.4)

We consider ε, χ, p, θ as state variables and U, S as state functions,
independent of ∇θ . Hence, as a consequence of (4.4), two inequalities
have to hold separately for all processes, namely

q · ∇θ ≤ 0, Ut − θSt ≤ σ : εt −
1
ρL

div (pξ). (4.5)

For simplicity, we assume Fourier’s law for the heat flux,

q = −κ(θ)∇θ, (4.6)

with the heat conductivity coefficient κ = κ(θ) > 0. We further intro-
duce the free energy F by the formula F = U − θS , so that, in terms
of F , the second inequality in (4.5) takes the form

Ft + θtS ≤ σ : εt +
1
ρL

div (pµ(p)∇p). (4.7)

We claim that the right choice of F for (4.7) to hold is given by

F =
1
2
Aε : ε + (χ+ρ∗(1−χ))

(
V (p) +

λ

2
( div u)2

)
+Lχ

(
1− θ

θc

)
− β(θ − θc) div u + F0(θ) + I(χ), (4.8)

S = −∂F

∂θ
=

L

θc
χ + β div u− F ′

0(θ), (4.9)
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where
V (p) = pϕ(p)− Φ(p), Φ(p) =

∫ p

0

ϕ(τ) dτ, (4.10)

F0(θ) is a purely caloric component of F , L > 0 is the latent heat,
and I is the indicator function of the interval [0, 1] . It is easy to check
that if we choose the phase dynamics equation in the form

γ(θ)χt + ∂I(χ) 3 (1− ρ∗)
(

Φ(p) + p div u− λ

2
( div u)2

)
+ L

(
θ

θc
− 1

)
(4.11)

with a coefficient γ(θ) > 0, then (4.7) holds for all processes. Now
observe that

U = F + θS

=
1
2
Aε : ε + (χ+ρ∗(1−χ))

(
V (p) +

λ

2
( div u)2

)
+Lχ + βθc div u + F0(θ)− θF ′

0(θ) + I(χ). (4.12)

The derivative of the purely caloric component F0(θ) − θF ′
0(θ) is the

specific heat capacity c(θ) = −θF ′′
0 (θ) . Assuming that c(θ) = c0 is a

positive constant, we obtain that F0(θ) = −c0θ log(θ/θc) up to a linear
function, and

U =
1
2
Aε : ε + (χ+ρ∗(1−χ))

(
V (p) +

λ

2
( div u)2

)
+ Lχ

+ βθc div u + c0θ + I(χ).
(4.13)

We now rewrite Eq. (4.2) in a more suitable form:

0 = Ut + div q − σ : εt −
1
ρL

div (pµ(p)∇p)

= (F + θS)t + div q − σ : εt −
1
ρL

div (pµ(p)∇p)

= −Bεt : εt −
1
ρL

µ(p)|∇p|2 − γ(θ)χ2
t + θSt + div q, (4.14)

which yields the identity

c0θt−div (κ(θ)∇θ) = Bεt:εt+
1
ρL

µ(p)|∇p|2+γ(θ)χ2
t−

L

θc
θχt−βθ div ut.

(4.15)
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5 The mathematical problem

We consider the system(
(χ+ρ∗(1−χ))(ϕ(p) + div u)

)
t

=
1
ρL

div (µ(p)∇p), (5.1)

ρMutt = div σ + g, (5.2)
σ = B∇sut + A∇su + ((χ+ρ∗(1−χ))(λ div u−p)− β(θ−θc))δ,

(5.3)

γ(θ)χt + ∂I(χ) 3 (1−ρ∗)
(
Φ(p) + p div u− λ

2
( div u)2

)
+

L

θc
(θ−θc),

(5.4)

c0θt − div (κ(θ)∇θ) =
1
ρL

µ(p)|∇p|2 + γ(θ)χ2
t −

L

θc
θχt

+ B∇sut : ∇sut − βθ div ut, (5.5)

for the unknown functions p, u, χ, θ , coupled with the boundary condi-
tions

u = 0, (5.6)
ξ · n = α(x)(p− p∗), (5.7)
q · n = ω(x)(θ − θ∗), (5.8)

on ∂Ω, where p∗ is a given outer pressure, θ∗ is a given outer temper-
ature, α(x) ≥ 0 is the permeability of the boundary, and ω(x) ≥ 0 is
the heat conductivity of the boundary.

We now simplify the problem by assuming that water is incompressible,
that is, λ = 0. A further simplification consists in assuming that the
process is quasistatic and that the shear stresses are negligible. Then
(5.2)–(5.3) can be reduced to

0 = div σ + g, (5.9)
σ = (ν div ut + λM div u− p(χ+ρ∗(1−χ))− β(θ − θc))δ.(5.10)

Assuming that the force g admits a potential G , that is, g = ∇G , this
yields

ν div ut + λM div u− p(χ+ρ∗(1−χ))−β(θ− θc) = −G + H(t), (5.11)

where H(t) is an “integration constant”, ν is the bulk viscosity coef-
ficient, and λM is the bulk elasticity modulus of the matrix material.
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In view of the boundary condition (5.6), we have that

H(t) = − 1
|Ω|

∫
Ω

(p(χ+ρ∗(1−χ)) + β(θ − θc)−G)(x, t) dx. (5.12)

With the new unknown function w = div u , which represents the rel-
ative volume change, the system (5.1)–(5.5) then becomes

(
(χ+ρ∗(1−χ))(ϕ(p)+w)

)
t
=

1
ρL

div (µ(p)∇p), (5.13)

νwt + λMw = p(χ+ρ∗(1−χ)) + β(θ − θc)−G + H(t),
(5.14)

γ(θ)χt + ∂I(χ) 3 (1−ρ∗) (Φ(p) + pw) + L

(
θ

θc
− 1

)
,

(5.15)

c0θt − div (κ(θ)∇θ) = νw2
t +

1
ρL

µ(p)|∇p|2 + γ(θ)χ2
t

− L

θc
θχt − βθwt. (5.16)

We prescribe the initial conditions

p(x, 0) = p0(x), (5.17)

w(x, 0) = w0(x), (5.18)

χ(x, 0) = χ0(x), (5.19)

θ(x, 0) = θ0(x). (5.20)

6 Main results

We make the following hypothesis on the data.

Hypothesis 6.1 We fix a time interval [0, T ] and assume that the
data of Problem (5.13)–(5.20) have the following properties:

(i) γ : [0,∞) → [0,∞) is continuous; ∃0 < cγ < Cγ : cγ(1 + θ) ≤
γ(θ) ≤ Cγ(1 + θ) for all θ ≥ 0;
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(ii) κ : [0,∞) → [0,∞) is continuous; ∃0 < cκ < Cκ , 0 < a < 1,
a < â < 16

5 + 6
5a : cκ(1 + θ1+a) ≤ κ(θ) ≤ Cκ(1 + θ1+â) for all

θ ≥ 0;

(iii) θ0 ∈ W 1,2(Ω) ∩ L∞(Ω) , θ∗ ∈ L∞(∂Ω × (0, T )) , θ∗t ∈ L2(∂Ω ×
(0, T )) , ∃θ̄ > 0 : θ0(x) ≥ θ̄ , θ∗(x, t) ≥ θ̄ ;

(iv) ∃ 0 < δ̂ ≤ δ < 1/4, ∃ 0 < cϕ < Cϕ such that for all p ∈ R we
have that
cϕ max{1, |p|}−1−δ ≤ ϕ′(p) ≤ Cϕ max{1, |p|}−1−δ̂ ;

(v) ∃0 < cµ < Cµ : cµ ≤ µ(p) ≤ Cµ for all p ∈ R ;

(vi) p0∈W 1,2(Ω)∩L∞(Ω) , p∗ ∈ L∞(∂Ω×(0, T ))∩L2(0, T ;W 1,2(∂Ω)) ,
p∗t ∈ L2(∂Ω×(0, T )) ;

(vii) w0, χ0 ∈ L∞(Ω) , χ0(x) ∈ [0, 1] a. e.,
∫
Ω

w0(x) dx = 0;

(viii) G ∈ L∞(Ω× (0, T )) , Gt ∈ L2(Ω× (0, T )) ;

(ix) Ω ⊂ R3 is a bounded connected set of class C1,1 , α : ∂Ω →
[0,∞) is Lipschitz continuous, ω ∈ L∞(∂Ω), ω(x) ≥ 0 a. e.,∫

∂Ω
α(x) ds(x) > 0,

∫
∂Ω

ω(x) ds(x) > 0.

The main result is the following existence theorem, and its proof can
be found in [13].

Theorem 6.2 Let Hypothesis 6.1 hold true. Then there exists a solu-
tion (p, w, χ, θ) to the system (5.12)–(5.20) with the regularity

p ∈ L∞(Ω×(0, T )), pt,∇θ ∈ L2(Ω×(0, T )), ∇p ∈ L∞(0, T ;L2(Ω)),
(6.1)

θ, wt ∈ Lp̄(Ω× (0, T )), w, χt ∈ L∞(0, T ;Lp̄(Ω)) for p̄ < 8 + a, (6.2)

θt ∈ L2(0, T ;W−1,q∗(Ω)) with some q∗ > 1. (6.3)
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[9] P. Krejč́ı and E. Rocca, Well-posedness of an extended model for water-
ice phase transitions, Discrete Contin. Dyn. Syst. Ser. S 6 (2013) 439–
460.
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[12] P. Krejč́ı, E. Rocca, and J. Sprekels, Liquid-solid phase transitions in a
deformable container. Contribution to the book Continuous Media with
Microstructure on the occasion of Krzysztof Wilmanski’s 70th birthday,
Springer (2010), 285–300.
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[13] M. Al Janaideh, P. Krejč́ı: Inverse rate-dependent Prandtl-Ishlinskii
model for feedforward compensation of hysteresis in a piezomicrop-
ositioning actuator. IEEE-ASME Transactions on Mechatronics 18
(2013), 1498–1507.

18



[14] A.H. El-Shaer, M. Al Janaideh, P. Krejč́ı, M. Tomizuka: Robust perfor-
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