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Summary

Quantum mechanics on graphs studies the behaviour of particles whose motion is restricted
to a system of edges connected in vertices. A typical problem to solve concerns the energy
spectrum, that is, the set of energies that are allowed for a particle confined to a graph of
given topological and metric properties.

Spectra of periodic quantum systems, including quantum graphs, are known to have
a band structure: intervals of allowed energies are interlaced with gaps corresponding to
forbidden energies. In 1933, Bethe and Sommerfeld conjectured that the number of spec-
tral gaps for a system periodic in more than one direction is finite. Over time the validity
of the conjecture was established for numerous systems; however, it also turned out that
quantum graphs do not comply with this law as their spectra have typically infinitely many
gaps, or no gaps at all. These findings led to a question, which then remained open for
two decades, about the existence of periodic quantum graphs with the “Bethe–Sommerfeld
property”, that is, featuring a nonzero finite number of gaps in the spectrum.

In the lecture, we at first find certain conditions under which a graph does not have
the Bethe–Sommerfeld property. Then we present a solution to the aforementioned open
problem – we demonstrate that periodic quantum graphs with a finite nonzero number of
spectral gaps do indeed exist. Our proof is constructive and yields yet another result: for
any chosen natural number there is a periodic quantum graph with that number of gaps in
its spectrum.
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Souhrn

Kvantová mechanika na grafech studuje chování částic, jejichž pohyb je omezen na sou-
stavu hran propojených ve vrcholech. Typickou úlohou k řešení bývá nalezení energetic-
kého spektra, tedy množiny energií, které jsou přípustné pro částici vázanou na graf o da-
ných topologických a metrických parametrech.

O spektrech periodických kvantových systémů, včetně kvantových grafů, je známo, že
mají pásovou strukturu: intervaly přípustných energií se střídají s mezerami odpovídají-
cími zakázaným energiím. V roce 1933 vyslovili Bethe a Sommerfeld domněnku, že je-li sys-
tém periodický ve více než jednom směru, počet spektrálních mezer je konečný. Postupem
času byla platnost této hypotézy potvrzena pro řadu systémů; zároveň se však ukázalo, že
neplatí pro kvantové grafy – v jejich spektrech typicky nacházíme buď nekonečný počet
mezer, anebo žádné mezery. Tato zjištění vedla k otázce, která poté zůstala dvě desetiletí
nezodpovězená, zda vůbec existují periodické kvantové grafy s „Betheho–Sommerfeldovou
vlastností“, tedy takové, v jejichž spektru je konečný nenulový počet mezer.

V přednášce nalezneme nejprve určité podmínky, za nichž graf Betheho–Sommerfeldovu
vlastnost nemá. Následně představíme řešení výše zmíněné úlohy – ukážeme, že periodické
kvantové grafy s konečným nenulovým počtem spektrálních mezer skutečně existují. Před-
ložíme konstruktivní důkaz, z nějž navíc vyplyne další výsledek: pro jakékoli zvolené přiro-
zené číslo existuje periodický kvantový graf s tímto zvoleným počtem mezer ve spektru.
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1 Introduction

1.1 Quantum mechanics on graphs

Quantum mechanics was established in the first half of the 20th century as a response to ex-
perimental discoveries of several phenomena on atomic scale that could not be explained
by classical physics. Quantum mechanics on graphs is its relatively new branch; it stud-
ies the behaviour of particles propagating along graph edges connected in vertices. Graphs
serve as efficient models of various nanosize graph-like systems, such as electrons confined
to microscopic networks or moving along bonds in large molecules.

The use of graphs as models of realistic objects is based on a simple idea: If a particle
is confined to a network built of thin wires or channels, its transversal motion in the cross
section of the wire is negligible with respect to its longitudal motion along the wire. Rep-
resenting the wires or channels by one-dimensional lines, and the whole network-shaped
object by a metric graph, substantially simplifies the mathematical description, as it prac-
tically allows to use ordinary differential equations instead of partial differential equations.

The very first application of this approach dates back probably to 1950s, when a graph
was used as a model of bonds in the naphthalene molecule [RS53]. Then the concept was
abandoned and nearly forgotten until its rediscovery at the end of the eighties [GP88, EŠ89]
in relation to the technological progress that demanded efficient theoretical methods for
examining properties of nanostructures. Since that time quantum graphs have been stud-
ied intensively. Nowadays there is an extensive literature on the subject, see e.g. proceed-
ings [EKST08] and monograph [BK13] referring to hundreds of research works.

In addition to its applicability to practically motivated problems, quantum mechanics
of graphs serves as a plentiful source of interesting solvable models illustrating quantum
effects. Notorious examples in quantum mechanics textbooks, such as the particle on a
line with the delta potential, the particle in a box etc., are de facto special cases of quantum
graphs. Quantum mechanics on graphs offers a variety of other solvable systems, even with
complicated topologies. One can utilize them for analyzing, understanding and explaining
nontrivial phenomena in quantum mechanics.

In this lecture we will focus on periodic graphs. Periodic quantum systems, including
quantum graphs, generally deserve attention as they naturally appear as models of crys-
talline structures. Periodic quantum graphs became popular especially in connection with
the discovery of graphene and related material objects such as carbon nanotubes [KP07],
but they are also interesting mathematically, because they may exhibit properties differ-
ent from standard periodic Schrödinger operators. One of those properties is related to the
famous Bethe–Sommerfeld conjecture.

1.2 Bethe–Sommerfeld conjecture

One of the most important characteristics of any quantum system is the set of its possible
energies. Let us emphasize that unlike classical mechanics, where the set of allowed ener-
gies of a system is always an interval taking the form [�min,∞), the set of allowed energies
of a quantum system has often a complicated structure; it may contain gaps and isolated
points. By the postulates of quantum mechanics, the set of allowed energies is equal to
the spectrum of the Hamiltonian (the operator corresponding to the total energy of the
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system), and usually referred to as the spectrum of the system.
Spectra of periodic quantum systems are generally known to have a band structure: in-

tervals of allowed energies are interlaced with open gaps corresponding to forbidden en-
ergies. In 1933, already in the early days of the quantum theory, Bethe and Sommerfeld
conjectured that if a system is periodic in more than one dimension, the number of gaps is
finite [SB33]. Confirming the validity of the conjecture turned out to be a difficult mathe-
matical problem; it took decades until an affirmative answer was obtained for most cases
of the “ordinary” Schrödinger operators [Sk79, Sk85, DT82, HM98, Pa08].

At the end of the 20th century, when the Bethe–Sommerfeld conjecture was discussed
in the context of quantum graphs, it was observed that periodic graphs can have an infinite
number of spectral gaps [SA00, Ex96a]. In other words, the claim represented by the Bethe–
Sommerfeld conjecture is false for quantum graphs. More interestingly, all cases studied
in the literature in subsequent years fell into one of those two situations: no gaps, or in-
finitely many gaps. For two decades, there was not a single confirmed case of a periodic
quantum graph whose number of spectral gaps is nonzero finite. These facts naturally gave
rise to the question about the very existence of periodic quantum graphs with the “Bethe–
Sommerfeld property”, that is, featuring a nonzero finite number of gaps in the spectrum.
This is the topic we are going to discuss in the lecture; for the brevity of expression we will
speak of those graphs as of Bethe–Sommerfeld graphs. As the main result, we will show that
Bethe–Sommerfeld graphs exist.

2 Basic notions

2.1 Quantum graph

A metric graph Γ is an ordered pair Γ = (V, E), whereV is a set of vertices and E is a set of
edges such that:

• The edges are undirected.

• Every edge 4 ∈ E has its length � (4 ) ∈ (0,+∞].

• Each edge 4 ∈ E having a finite length � (4 ) < ∞ connects two vertices, which are
called endpoints. If the two endpoints coincide, the edge is called loop.

• Each edge having infinite length � (4 ) = +∞ is connected to only one vertex, which is
its sole endpoint.

• Multiple edges connecting two vertices are permitted.

By a degree of a vertex D ∈ V in the graph Γ we mean the number of occurrences of D as
an endpoint among all the edges in E.

When the motion of a quantum particle is restricted to a metric graph Γ with edges
E = {41, 42, 43, . . .}, the state of this quantum system is represented by the wave function
Ψ = (k1,k2,k3, . . .)) , wherek8 (the 8 -th component of Ψ) is a complex function with do-
main (0, � (4 8 )) that corresponds to the 8 -th edge of the graph. In each of the vertices, the
functions k8 are required to satisfy boundary conditions that mathematically express the
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physical properties of the vertex. Their formulations and important examples will be dis-
cussed in sections 2.2 – 2.4.

The term quantum graph stands for a metric graph Γ equipped with the differential
operator corresponding to the total energy (Hamiltonian)�Γ. In the simplest setting when
there are no additional potentials on the graph edges, and so the particle moves freely along
each edge, the Hamiltonian acts on the components of the wave function Ψ as

k8 ↦→ −
ℏ2

2;k ′′8 , (1)

where ; is the mass of the particle and ℏ ≈ 1.054 572 · 10−34 J·s is the reduced Planck
constant.

In mathematical approach to quantum graphs, it is common to set the factor ℏ2/(2;)
equal to 1, which corresponds to choosing physical constants such that ℏ = 2; = 1.
This allows to express the particle energy � and its momentum > =

√
2;� in terms of

the wavenumber 9 =
√

2;�/ℏ simply as

� = 9 2 , > = 9 .

In other words, the square root of� (frequently appearing in calculations) and the momen-
tum can be both identified with the wavenumber 9 . We will follow this convention.

2.2 Boundary conditions in quantum graph vertices

Consider a quantum graph vertex of degree < and denote the wave function components
on the incident edges byk1, . . . ,k< (Figure 1).
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Figure 1: A quantum graph vertex (of degree 5)

Let us set

Ψ(0) =
©«
k1(0+)

...

k< (0+)

ª®®¬ and Ψ′(0) =
©«
k ′1(0+)

...

k ′< (0+)

ª®®¬ ,
wherek8 (0+) denotes the limit ofk8 at the vertex, andk ′

8
(0+) is the derivative ofk8 at the

vertex (the derivative in conventionally taken in the outgoing sense). The boundary condi-
tions in the vertex connect the values k8 (0+) and k ′

8
(0+) in the form of < linear relations,
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commonly written in the compact way

�Ψ(0) + �Ψ′(0) = 0, (2)

where � and � are complex < × < matrices such that

• rank(� |�) = <,
• the matrix ��∗ is Hermitian;

(3)

the symbol (� |�) denotes the < × 2< matrix with �, � forming the first and the second <
columns, respectively [KS99]. Properties (3) ensure the self-adjointness of the Hamiltonian,
which is required by the postulates of quantum mechanics.

There exist alternative formulations of the conditions (2)&(3), in which the require-
ments (3) are incorporated into (2) by means of a special canonical form of the matrices
�,� . One of them, proposed in [Ha00] and [KS00], expresses matrices � and � unambigu-
ously via a unitary < × < matrix* :

(* − � )Ψ(0) + i(* + � )Ψ′(0) = 0. (4)

In this lecture we will take advantage of another canonical form of boundary conditions,
which was derived in [CET10a] and is based on transforming �,� into block matrices as
follows, (

� (@ ) )

0 0

)
Ψ′(0) =

(
( 0
−) ∗ � (<−@ )

)
Ψ(0) , (5)

where @ ∈ {0, 1, . . . , <}, the symbol � (@ ) stands for the identity matrix of order @ , ) is a
general complex @ × (< − @ ) matrix and ( is a Hermitian matrix of order @ . We call (5) () -
form of boundary conditions.

2.3 Scattering matrix

When a quantum particle with momentum 9 reaches a vertex of degree<, it is partly trans-
mitted to the other edges and partly reflected. The scattering characteristics of the vertex
are described by the scattering matrix

S(9 ) =
©«
S11(9 ) S12(9 ) · · · S1< (9 )
S21(9 ) S22(9 ) · · · S2< (9 )

...
...

...

S<1(9 ) S<2(9 ) · · · S<< (9 )

ª®®®®¬
,

which has the following properties:

• The elements of S(9 ) depend on the momentum 9 .

• The value |S8 8 (9 ) |2 is equal to the probability of reflection on the 8 -th line, the value
|S: 8 (9 ) |2 for : ≠ 8 equals the probability of transmission from the 8 -th to the :-th line.

• Matrix S(9 ) is unitary for every 9 . This property may be viewed as the quantum ver-
sion of Kirchhoff’s law, see [KS99, KS00].
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2.4 Special types of vertex couplings

Vertex couplings at a vertex of degree < form a large family, with interesting physical inter-
pretations [CS98, CET10a, EP09] and a rich variety of scattering characteristics. Below we
list three important types (or classes) that will be used in forthcoming presentation.

Free coupling

The free coupling is the most common type of vertex couplings. A vertex with the free cou-
pling is characterized, in physical terms, by a free motion of particles through the vertex. It
is mathematically expressed by so-called Kirchhoff boundary conditions

k1(0) = k2(0) = · · · = k< (0) =: k (0) ,
<∑
8=1

k ′8 (0) = 0 . (6)

X coupling

The X coupling corresponds to a repulsive or attractive potential in the vertex [Ex96b]. It is
mathematically described by boundary conditions

k8 (0) = k: (0) =: k (0) , 8 , : = 1 . . . , < ,
<∑
8=1

k ′8 (0) = Uk (0) , (7)

where U ∈ ℝ is a parameter of the coupling representing the strength and character of the
potential (repulsive for U > 0, attractive for U < 0). The special choice U = 0 gives the free
coupling discussed above.

Scale-invariant couplings

A vertex coupling is called scale-invariant if the scattering matrix S(9 ) (and thus the scat-
tering behaviour) is independent of the particle momentum 9 . This property is mathemat-
ically manifested in canonical forms (4) and (5) of boundary conditions in the following
manner [BK13, CET10b]:

• The matrix* in boundary conditions (4) is Hermitian.

• The block ( in the () -form of boundary conditions (5) vanishes.
Scale-invariant couplings have been studied since roughly 2000 [FT00, NS00, CT10].
Example 2.1. The free coupling is scale-invariant. The X coupling with parameter U ≠ 0 is
not scale-invariant.

3 Spectra of periodic graphs: preliminary considerations

We are going to present three main results regarding the existence of Bethe–Sommerfeld
quantum graphs, that is, periodic quantum graphs having a nonzero finite number of gaps
in the spectrum. The first result gives a necessary condition: at least some of the vertex
couplings in such a graph must lie outside the scale-invariant class.
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Result 3.1. If all the couplings at the vertices of an infinite periodic quantum graph are scale-
invariant, then the graph does not have the Bethe–Sommerfeld property.

As our second main result – the most important one – we will demonstrate that periodic
quantum graphs with a nonzero finite number of spectral gaps do exist.

Result 3.2. Bethe–Sommerfeld graphs exist.

The third main result says that any number of spectral gaps can be attained.

Result 3.3. For every prescribed number # ∈ ℕ, there is a periodic quantum graph having
exactly# gaps in its spectrum.

Below we prove Result 3.1 and discuss its generalization. Results 3.2 and 3.3 will be es-
tablished in Section 4.

3.1 Graphs with scale-invariant couplings

The following theorem constitutes the announced Result 3.1.

Theorem 3.4 ([ET17]). Let �0 be a Hamiltonian of a periodic quantum graph with scale-
invariant couplings at all the vertices. If f (�0) contains a gap, then it contains infinitely
many gaps.

Sketch of the proof. If all the vertex couplings are scale-invariant, their scattering charac-
teristics are independent of the momentum 9 . Using an approach developed in [BG00]
and [BB13], one can show that the momentum 9 enters the spectral condition only via the
vector

®q (9 ) = ({9�0}(2c) , {9�1}(2c) , . . . , {9�3 }(2c)) ,

where �0, �1, . . . , �3 are all the edge lengths of the graph and the symbol {F}(2c) stands for
the difference between F and the nearest integer multiple of 2c .

Assume that a value � = 9 2 belongs to a gap, i.e., 9 violates the spectral condition. For
every � > 0 one can find a 9 ′ > � such that ®q (9 ′) becomes arbitrarily close to ®q (9 ), and
so 9 ′ violates the spectral condition, too.

Therefore, if some� = 9 2 belongs to a gap, then for any� > 0 there is an� ′ = (9 ′)2 > � 2

belonging to a gap. Consequently, the number of gaps is infinite.
�

3.2 Graphs with general vertex couplings

Theorem 3.4 inspires a question whether (and how) the statement can be extended to quan-
tum graphs with vertex couplings that are not scale-invariant. Assume that the coupling in
every vertex of the graph is described by boundary conditions in the () -form, i.e.,(

� (@ ) )

0 0

)
Ψ′(0) =

(
( 0
−) ∗ � (<−@ )

)
Ψ(0) (8)

for some < ≥ @ ≥ 0, some matrix) ∈ ℂ@ ,<−@ and some Hermitian matrix ( of order @ . Let
us emphasize that the values < and @ , as well as the matrices ) and ( , can be different in
different vertices.
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In view of the fact that the scale-invariance of the coupling is broken by the presence of
a nonzero matrix ( in (8), we introduce the following notion:

Definition 3.5. Let a vertex coupling be given by boundary conditions (8). The associated
scale-invariant vertex coupling is given by boundary conditions(

� (@ ) )

0 0

)
Ψ′(0) =

(
0 0
−) ∗ � (<−@ )

)
Ψ(0) .

That is, the coupling associated to (8) is obtained by replacing the square matrix ( with
the zero matrix. With this notion in hand we are ready to formulate a stronger version of
Theorem 3.4.

Theorem 3.6 ([ET17]). Consider a periodic graph with general couplings at the vertices and
denote its spectrum as f (� ). Let further f (�0) be the spectrum of the same graph, in which
all vertex couplings are replaced by the associated scale-invariant couplings. If f (�0) has at
least one gap, then f (� ) has infinitely many gaps.

Theorem 3.6 is a powerful criterion for showing that a given periodic graph with gen-
eral vertex couplings cannot be of the Bethe–Sommerfeld type. The theorem allows to rule
out at once the whole class of graphs sharing the same associated scale-invariant vertex
couplings.

4 Bethe–Sommerfeld quantum graphs

Let us proceed to proving the existence of a periodic quantum graph with a nonzero finite
number of gaps in its spectrum (Bethe–Sommerfeld graph). We will present a constructive
proof that will allow us to put forward a stronger claim: there is a periodic quantum graph
having any specified number of gaps in its spectrum.

To this aim we consider a rectangular lattice graph with edges of lengths 0 and 1 , see
Figure 2. Since we know from the results of Section 3 that the Bethe–Sommerfeld property
requires non-scale-invariant vertex couplings, let us assume that there are the X couplings
with parameter U ≠ 0 in the vertices (cf. Example 2.1). This particular model was originally

r r r r
r r r r
r r r r
r r r r

0

1

Figure 2: A rectangular lattice graph

introduced in [Ex95a] and was further discussed in [Ex96a, EG96], where the gap condition
was derived. The condition depends on the sign of U (repulsive vs. attractive X couplings).
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• If U > 0 (repulsive X coupling), a number 9 2 > 0 belongs to a gap if and only if the
value 9 > 0 satisfies the condition

tan
(
90

2 −
c

2

⌊
90

c

⌋)
+ tan

(
91

2 −
c

2

⌊
91

c

⌋)
<

U

29 , (9)

where b·c is the floor function.

• If U < 0 (attractive X coupling), 9 2 > 0 belongs to a gap if and only if 9 > 0 satisfies

cot
(
90

2 −
c

2

⌊
90

c

⌋)
+ cot

(
91

2 −
c

2

⌊
91

c

⌋)
<
|U |
29 . (10)

The solution of conditions (9) and (10) turns out to depend deeply on the type of irra-
tionality of 0/1 . To describe the situation, we will need the apparatus of continued frac-
tions.

4.1 Continued fractions

A continued fraction associated to a \ ∈ ℝ is a representation of \ in the form

\ = 00 +
1

01 + 1
02+ 1

03+ 1
· · ·

, (11)

where 00 ∈ ℤ and 01, 02, 03, . . . ∈ ℕ. Representation (11) is usually written in a compact way
as \ = [00;01, 02, 03, . . .].

Example 4.1. For \ = [1; 1, 1, 1, . . .] = [1; 1̄], we have

\ = 1 + 1
1 + 1

1+ 1
1+ 1
· · ·

= 1 + 1
\
,

hence \ 2 = \ + 1, which has the unique positive solution \ =
1+
√

5
2 . This constant is notori-

ously known under the name golden mean and usually denoted by q .

The continued fraction expansion of \ is finite if and only if \ is rational. Infinite expan-
sions [00;01, 02, 03, . . .] always converge [Kh64]. Consequently, every continued fraction
defines a unique real number \ .

Terminating the expansion [00;01, 02, 03, . . .] at the <-th position, one gets a rational
number

><

?<
= [00;01, 02, . . . , 0<],

which is called the <-th convergent of the number \ = [00;01, 02, 03, . . .]. Even-order con-
vergents approach \ from below, odd-order convergents approach \ from above; that is,

>0
?0

<
>2
?2

<
>4
?4

<
>6
?6

< · · · ≤ \ ≤ · · · < >7
?7

<
>5
?5

<
>3
?3

<
>1
?1

.
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Example 4.2. If \ = [1; 1, 1, 1, . . .] (the golden mean), we obtain

>0
?0

= [1] = 1 =
1
1 ,

>1
?1

= [1; 1] = 1 + 1
1 =

2
1 ,

>2
?2

= [1; 1, 1] = 1 + 1
1 + 1

1
=

3
2 ,

and similarly >3
?3

= 5
3 , >4

?4
= 8

5 , >5
?5

= 13
8 etc.

A number \ ∈ ℝ is called badly approximable if there exists a 2 > 0 such that����\ − >? ���� > 2

?2

for all >, ? ∈ ℤ with ? ≠ 0. An irrational number \ is badly approximable if and only if the
elements of its continued fraction representation [00;01, 02, 03, . . .] are bounded [Sch80].

4.2 The existence of a Bethe–Sommerfeld quantum graph

Earlier results [Ex96a, EG96] suggest that the considered rectangular graph can be of Bethe–
Sommerfeld type only if the rectangle side ratio \ = 0/1 is a badly approximable irrational
number. That is, the coefficients of the continued fraction representation of \ must be
bounded. Let us focus on the simplest case when all the coefficients are equal to 1,

\ = [1; 1, 1, 1, . . .];

that is, \ is chosen to be the golden meanq =
√

5+1
2 (cf. Example 4.1). Analyzing inequalities

(9) and (10) for the particular ratio 0
1
= q , we get the following description of the spectrum:

Theorem 4.3 ([ET17]). Consider a rectangular lattice graph with edge lengths 0 and 1 such
that 0

1
= q =

√
5+1
2 . Assume that there are the X couplings with parameter U in the vertices.

(i) If U > c2
√

50 or U ≤ − c2
√

50 , the graph has infinitely many spectral gaps.

(ii) If

−2c
0

tan
(

3 −
√

5
4 c

)
≤ U ≤ c2

√
50

,

there are no gaps in the spectrum.

(iii) If

− c2
√

50
< U < −2c

0
tan

(
3 −
√

5
4 c

)
, (12)

there is a nonzero and finite number of gaps in the spectrum.

Part (iii) of Theorem 4.3 is the most important one: it gives the affirmative answer to
the longstanding open problem regarding the existence of Bethe–Sommerfeld quantum
graphs.

At the same time Theorem 4.3 indicates that the Bethe–Sommerfeld behaviour is spe-
cial. By inequalities (12), a nonzero finite number of gaps in the spectrum occurs only for
the value U0 lying in a narrow window, roughly −4.414 . U0 . −4.298. The strictness of
these conditions intuitively explains the rarity of Bethe–Sommerfeld quantum graphs.
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4.3 Periodic graphs with a given number of spectral gaps

As the next step, we will count the exact number of spectral gaps in the Bethe–Sommerfeld
case (iii) of Theorem 4.3. As a by-product we obtain Result 3.3 announced earlier.

Theorem 4.4 ([ET17]). Consider a rectangular lattice graph with edge lengths 0 and 1 such
that 0

1
= q =

√
5+1
2 and with the X couplings with parameter U in the vertices. For a given

# ∈ ℕ, there are exactly# gaps in the spectrum if and only if U is chosen within the bounds

−�#+1
0
≤ U < −�#

0
, (13)

where

�8 :=
2c

(
q28 − q−28 )
√

5
tan

(c
2q
−28

)
for every 8 ∈ ℕ. (14)

Since the numbers �8 given by (14) form an increasing sequence, inequalities (13) give
a nonempty interval for every# . This fact immediately implies the claim of Result 3.3: For
any prescribed number# ∈ ℕ, there exists a periodic quantum graph having exactly# gaps
in its spectrum.

5 A control of the arrangement of gaps

Finally we will establish a connection between the spectral properties of the graph and the
number-theoretical properties of its edge lengths ratio. For the rectangular lattice with edge
lengths 0 and 1 and with the X couplings with parameter U in the vertices, we will reveal
an explicit relation between the terms in the continued fraction representation of the value
\ = 0/1 and the number and positions of gaps in the spectrum of the graph.

In order to keep the presentation as straightforward as possible, we will focus on the
case U > 0 (repulsive coupling) and restrict our attention on edge lengths ratios \ = 0/1
with continued fraction representations of type

\ = [1; 1, 22, 1, 24, 1, 26, 1, 28, 1, . . .] such that 22< ∈ {1, 2} for all < ∈ ℕ. (15)

In other words, \ is obtained from the golden mean q = [1; 1, 1, 1, 1, 1, . . .] by replacing
some of the even-order terms with 2’s.

Then the values 22, 24, 26, . . .determine the positions of spectral gaps in accordance with
the following theorem, which is a special case of [Tu19, Theorem 3].

Theorem 5.1. Consider a rectangular lattice graph with edge lengths 0 and 1 = 0/\ having
a X coupling with parameter U ∈

[
4c (2−

√
3)

0
, 2c2

50

]
in each vertex. If \ takes the form (15), then

9 2 is a lower endpoint of a spectral gap if and only if

9 2 =

(>2<−1c

0

)2

for >2<−1 denoting the numerator of the (2< − 1)-th convergent of \ such that 22< = 2.
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The theorem says that under the assumptions, the number of spectral gaps is equal to
the number of 2’s in the continued fraction representation (15), and the locations of the gaps
are directly governed by the arrangement of 2’s. Let us illustrate the result with an example.

Example 5.2. Let 0 > 0 and U ∈
[

4c (2−
√

3)
0

, 2c2
50

]
.

• If \ = [1; 1, 2, 1̄] = (15+
√

5)/10, the spectrum has only one gap, whose lower endpoint
is located at (>1c/0)2. Since the first convergent of \ is

>1
?1

= [1; 1] = 1 + 1
1 =

2
1 ,

the lower endpoint of the gap is 9 2 = (>1c/0)2 = 4c2/02.

• If \ = [1; 1, 2, 1, 2, 1̄] = (209 +
√

5)/122, the spectrum has exactly 2 gaps, whose lower
endpoints are located at (>1c/0)2 and (>3c/0)2. Since the 1st and the 3rd convergent
of \ are

>1
?1

= [1; 1] = 1 + 1
1 =

2
1 and >3

?3
= [1; 1, 2, 1] = 1 + 1

1 + 1
2+ 1

1

=
7
4 ,

the lower endpoints of the gaps are (2c/0)2 = 4c2/02 and (7c/0)2 = 49c2/02.

Conclusions

The results presented in the lecture can be summarized as follows.

• We proved the existence of a periodic quantum graph having a nonzero finite number
of gaps in its spectrum. This achievement solves a longstanding open problem – not
a single example of such a graph had been known for two decades until 2017.

• The proof is constructive and shows even more: For any chosen number# ∈ ℕ, there
is a periodic quantum graph having exactly# gaps in its spectrum.

• In addition, we demonstrated that the positions of the gaps can be directly controlled
by varying the terms in the continued fraction expansion of the edge lengths ratio.
This result confirms a deep connection between the number-theoretical properties
and the arrangement of the gaps. It also contributes to the study of the problem of
controlling the number and positions of gaps in spectra of periodic quantum graphs,
which is known to be extremely hard [BK13].
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