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Summary

Generalized linear models and particularly logistic regression have become
one of the most used statistical procedures employed by statisticians and re-
searchers for the analysis of binary, proportional or count response variables
in various �elds, including epidemiologic research, machine learning, biome-
dical research, social science, computer science, electronics and electrical engi-
neering, etc. In most of the areas the data sets to be analyzed usually contain
atypical observations, so called outliers. Thus, one of the most important is-
sues is the estimation of parameters of the models and testing hypotheses
about these parameters in the presence of outliers. The most widely used
method for parameter estimation in the frame of generalized linear models
is the maximum likelihood estimator which is well known to be extremely
sensitive to `contaminated' data. For this reason some interesting robust M-
estimators have been introduced in the statistical literature to overcome the
above mentioned problem.

In this habilitation lecture we introduce and study a new robust estimator,
called modi�ed median estimator, as well as a Wald-type test based on it.
Their theoretic asymptotic properties are also discussed. The e�ciency and
robustness of the modi�ed median estimator as well as the corresponding test
is studied on the basis of a simulation experiment. The results point out their
good behavior in some concrete situations and in comparison with already
existing methods.
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Souhrn

Zobecn¥né lineární modely a speciáln¥ logistická regrese se staly jedn¥mi z
nejvíce pouºívaných metod aplikovaných statistiky a v¥deckými pracovníky
na analýzu binárních, propor£ních nebo £etnostních vysv¥tlovaných prom¥n-
ných v mnoha oborech, jako jsou nap°. epidemiologický výzkum, strojové
u£ení, biomedicínský výzkum, sociální v¥dy, po£ítaçové v¥dy, elektronika a
elektrické inºenýrství apod. Ve v¥t²in¥ t¥chto oblastí v²ak sady dat, které
mají být analyzovány, obvykle obsahují atypická pozorování, tzv. outliery.
Jedním z nej·leºit¥j²ích problém· je tedy odhadování parametr· model· a
testování hypotéz o t¥chto parametrech za p°ítomnosti odlehlých pozorování.
V oblasti zobecn¥ných lineárních model· je nejvíce aplikovanou metodou pro
odhad parametr· model· metoda maximální v¥rohodnosti, o které je známo,
ºe je velmi citlivá na `za²um¥ná' data. Z tohoto d·vodu bylo ve statistické
literatu°e navrºeno n¥kolik zajímavých robustních odhad·, s cílem odstranit
zmín¥ný problém.

V této habilita£ní p°edná²ce zavádíme a studujeme nový robustní odhad,
zvaný modi�kovaný mediánový odhad, stejn¥ jako na n¥m zaloºenou testovací
statistiku Waldova typu. Jsou také diskutovány jejich teoretické asymptotické
vlastnosti. E�cience a robustnost modi�kovaného mediánového odhadu a
p°íslu²ného testu je studována pomocí simula£ních experiment·. Výsledky
ukazují na jejich dobré vlastnosti v n¥kterých konkrétních situacích a ve
srovnání s jiº existujícími metodami.
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1 Introduction

Generalized linear models (GLMs) are nowadays widely used for analysis of
data in many various �elds. They are in fact generalization of the model of
classical linear regression which allows to assume non-normally distributed
response variables, heteroscedasticity and non-linear relationship between the
expectation of the response variable and the explanatory variables. GLMs
were �rst introduced in [16] and received a lot of attention in the recent past.
The class of GLMs provides an unifying framework and contains as special
cases models such as linear regression, ANOVA, logistic regression, Poisson
regression, log-linear models, and many others. In this lecture we focus our
attention on logistic regression which is one of the most used GLMs for
binary or proportional response variables. Nevertheless, the presented ideas
and methods can be generalized also to other GLMs for discrete responses.

Estimation and testing procedures in logistic regression are usually based
on maximum likelihood estimators (MLEs) and inherit the sensitivity of these
estimators in the presence of atypical observations. A small amount of these
kind of data can seriously a�ect the level or the power of the corresponding
tests. Therefore it is important to consider robust estimators in order to be
able to get robust tests, i.e., to get testing procedures in such a way that in
the presence of atypical observations the level as well as the power function
will be stable. It is important to note that the problem of getting robust esti-
mators has been more developed that the problem of considering robust tests
for the logistic regression model. The papers [12], [6], [2] and [1] study the
problem associated with �nding test statistics with stable level and power un-
der atypical observations. In [12] robust tests for a general parametric model
including logistic regression is introduced. In [6] the authors de�ne robust de-
viances based on generalizations of quasi�likelihood functions and propose a
family of test statistics for model selection in generalized linear models. They
also investigate the stability of the asymptotic level under contamination. A
Wald-type test statistic based on a weighted Bianco and Yohai estimator
is proposed and studied in [2]. In [1] the problem is considered under the
assumption of random covariates and family of robust Wald type tests is
introduced, where the minimum density power divergence estimator is used
instead of the maximum likelihood estimator. It is theoretically established
that the level as well as the power of the Wald-type tests are stable against
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contamination, while the classical Wald test breaks down in this scenario.
Our contribution to this topic consists in introducing a new estimator

using the median function, which is known to be robust, and de�ning a version
of a Wald-type test based on the proposed estimator. In order to describe
the estimator and the corresponding test let us start with the de�nition of
the problem of estimation in logistic regression.

We are interested in estimation of the parameter β ∈ Rd in the binary
regression based on independent observations Y1, ..., Yn with Bernoulli distri-
bution,

Yi ∼ Be (πi) , i = 1, . . . , n,

where the Bernoulli parameters πi = P (Yi = 1) depend on β and vectors of
explanatory variables (regressors) xi ∈ Rd,

πi = πi (β) = π
(
xTi β

)
.

Here and in the sequel, xTβ denotes the scalar product of vectors x and β
and π(t) : R 7→ (0, 1) is strictly monotone and in�nitely di�erentiable.

If we use the logistic function

π(t) =
et

1 + et
, t ∈ R,

the problem reduces to the classical logistic regression with binary observa-
tions Yi ∼ Be (πi), i = 1, . . . , n, and

logit(πi) = log

(
πi

1− πi

)
= xTi β .

In the classical logistic regression the MLE β̂n = β̂n (Y1, ..., Yn) of β mini-
mizes the sum of deviances (negative scores)

Dn(β) =
n∑
i=1

di (β)

of the sample (Y1, ..., Yn), where

di (β) = −Yi ln πi (β)− (1− Yi) ln (1− πi (β)) (1)

are the deviances of individual observations Yi. Thus

β̂n = arg min
β
Dn(β) = arg min

β

n∑
i=1

di (β) .
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Consistency and asymptotic normality with the variances at the Cramér-Rao
lower bound can be proved for this estimator.

However, it is known that maximum likelihood estimates of the parameters
β are sensitive to contamination of the data (x1, Y1) , ..., (xn, Yn) by outliers
or leverage points. Typical outliers are

Yi = 0 when π
(
xTi β

)
≈ 1 or Yi = 1 when π

(
xTi β

)
≈ 0.

Such outlying values may lead to large deviances di (β) (cf. (1)), thus pushing
the MLE's β̂n far away from the true value β.

In order to restrict the undesired in�uence of large deviances resulting
from contamination of data, previous authors replaced the deviances di (β)
by appropriate functions % (di (β)) of deviances, or even by more general
expressions φ

(
Yi, π

(
xTi β

))
. This lead to M -estimators βn of the type

βn = arg min
β

n∑
i=1

% (di (β)) (2)

or

βn = arg min
β

n∑
i=1

φ
(
Yi, π

(
xTi β

))
(3)

for % : (0,∞)→ R and φ : (0,∞)×(0, 1)→ R. Some estimators of this form
were studied in [17], [3] and [9]. Other interesting robust estimators of the
parameters in the logistic regression model have been presented for instance
in [7], [8], [4] and [5].

2 Median based estimators

In this section we continue the line sketched above and we present another two
estimators of the type (3). It is known (cf. e. g. [11], [18], [15], [19]) that the
median estimator of parameters of linear and non-linear regression is robust
with respect to contamination of observations. The idea is to generalize this
concept to our model with the hope that the median estimator for the logistic
regression will be robust too.

2.1 Median estimator

In [14] we propose a new robust M -estimator of the logistic regression pa-
rameter β ∈ Rd which is based on median function and which is expected to
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be more robust than the MLE. It can be de�ned by the formula

β̂n = arg min
β

n∑
i=1

∣∣Yi −m (π (xTi β))∣∣ ,
where m (π) is for every π ∈ (0, 1) the median function

m (π) = F−1π (1/2) = inf {y ∈ R : Fπ (y) ≥ 1/2} .
The condition of applicability of this estimator is sensitivity of the median
function m (π) to the change of parameter π ∈ (0, 1) (strict monotonicity of
m (π) on (0, 1)). Unfortunately, in the discrete Bernoulli model the median
function has the form

m (π) = I (π > 1/2) =

{
0 if π ≤ 1/2

1 if π > 1/2

and cannot be used directly, since it is piecewise constant and it is thus
not sensitive to small changes of the parameter π. This conclusion remains
valid also for any other generalized linear model with discrete responses.
To overcome this problem, the main and basic idea of the mentioned paper
is to assume a transformation, called statistical smoothing, of the discrete
observations Y1, . . . , Yn. This transformation consists in adding independent
and uniformly on (0, 1) distributed random variables Ui to the observations
Yi, i.e. it considers the continuous data

Zi = Yi + Ui, i = 1, . . . , n,

where Ui
iid∼ U(0, 1). Let us note that the introduced transformation is statis-

tically su�cient since the original Yi may be recovered completely by applying
the integer-part operation to Zi,

Yi = [Zi] a.s., i = 1, . . . , n.

Statistical smoothing goes in fact in the opposite direction to the statisti-
cal quantization frequently applied to continuous data. The quantization is
usually accompanied by the loss of information so that it is not statistically
su�cient.
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Using the smoothed continuous observations Z1, . . . , Zn, the median esti-

mator β̂
Med

is then de�ned as

β̂
Med

= arg min
β

n∑
i=1

∣∣Zi −m (π(xTi β)
)∣∣ , (4)

where

π(xTi β) =
exp(xTi β)

1 + exp(xTi β)

and m(p) is the median function

m (p) = F−1p (1/2) = inf {z ∈ R : Fp (z) ≥ 1/2} (5)

corresponding to the class of distribution functions Fp of the random variables

Z = Be (p) + U(0, 1)

when the parameter p varies in the closed interval [0, 1]. It can be shown that
the median function (5) has the explicit form

m(p) = 1 +
p− 1/2

max{p, 1− p}
, 0 ≤ p ≤ 1, (6)

and is strictly increasing in p (cf. Figure 1). Since the logistic function is
strictly increasing too, the argumentm

(
π(xTβ)

)
in (4) detects every change

of the product xTβ.
Consistency and asymptotic normality of the median estimator de�ned

in (4) are proved in the paper [14]. Simulation studies are carried out to
study the sensitivity of the median estimators to outlying and leverage points
and to compare it with the sensitivity of some robust estimators previously
introduced in the literature. The median estimators seem to be more robust
for larger sample sizes and higher levels of contamination. Unfortunately, the
increased robustness of median estimator is usually accompanied by a loss of
e�ciency. In the next section we will describe a method for suppressing the
ine�ciency.

2.2 Modi�ed median estimator

In this section we are going to propose a modi�cation of the median estimator,
de�ned in (4), with the aim to improve its behavior. In fact, we have made the
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Figure 1. Median function m(p) and its inverse m−1(z).

�rst attempt already in [14], where the method of enhancing of the median
estimator was introduced. This method increases e�ciency of the median
estimator in some cases and it consists in replacing the set of statistically
smoothed data Zi = Yi + Ui, 1 ≤ i ≤ n, by the expanded set obtained by
considering for k > 1 the matrix of data

Zij = Yi + Uij, 1 ≤ i ≤ n, 1 ≤ j ≤ k, (7)

where Uij are U (0, 1)-distributed and mutually as well as on Y1, . . . , Yn in-
dependent random variables, and applying the median estimator to this ex-
panded set. In other words the k-enhanced median estimator can be de�ned
by

β̂
kMed

= arg min
β∈Rd+1

1

k

n∑
i=1

k∑
j=1

∣∣Yi + Uij −m
(
π(xTi β)

)∣∣ . (8)

It seems that the idea can still be improved upon. If we let k → ∞ in (8),
we get the formula

β̂
MMe

= arg min
β∈Rd+1

n∑
i=1

∫ 1

0

∣∣Yi + u−m
(
π(xTi β)

)∣∣ du (9)

de�ning a deterministic estimate (i.e. it does not depend on any additionally
generated random sample used for statistical smoothing), which would con-
ceivably inherit the good properties of the original estimate plus a smaller
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variance. The estimator de�ned by the formula (9) for the median function
(6) will be called modi�ed median estimator, or brie�y MMe-estimator, in
the sequel. It is obvious that the MMe-estimator is an M-estimator, since

β̂ = arg min
n∑
i=1

φ
(
Yi, π

(
xTi β

))
with

φ
(
Yi, π

(
xTi β

))
=

1∫
0

∣∣Yi + u−m
(
π
(
xTi β

))∣∣ du .
So general asymptotic theory for M-estimators can be applied and asymptotic
normality of the modi�ed median estimator can be established. For more
details see [13]. In the next section we carry out a simulation study in order
to asses the behavior of the proposed modi�ed median estimator.

2.3 Simulation experiment - robustness

Properties of the median estimator and some other well known estimators,
tailor-made for robust estimation in logistic regression, were compared by
an extensive simulation study done in [14]. The results show the robustness
of the median estimators by demonstrating that they outperform the above
mentioned classical robust estimators in certain special situations (e. g. heavy
contaminations and large sample sizes).

Now we present a simulation study in order to see if the conclusions con-
cerning robustness obtained in the above quoted work for the median esti-
mator remain valid also for the modi�ed median estimator de�ned in (9). For
the sake of completeness, we have included in the comparisons also the re-
sults for the weighted Bianco and Yohai estimator (WBY-estimator) de�ned
in [9] and MLE.

The robustness is compared by means of simulated performances of all
selected estimators in a logit model ε-contaminated at the levels 0 ≤ ε ≤ 0.1
by an alternative data source generating outliers.

The simulated data Y1, . . . , Yn are generated by the contaminated logit
model

Yi ∼ (1− ε)Be
(
π
(
xTi β0

))
+ εBe

(
1− π

(
xTi β0

))
, (10)

where xi are the concrete regressors

xi = (xi0 ≡ 1, xi1 ∼ N(0, 1))T (11)
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and β0= (β00, β01)
T = (−2.82, 2.82)T are the true parameters leading to the

probability
Pr (Yi = 1) ≡ π

(
xTi β0

)
= 0.2 . (12)

Let us note that the considered model is the same as used in [3] for demon-
stration of robustness of their estimator.

The simulation experiment can be described by the following steps:

1. Select n ∈ {50, 100, 250, 500, 1000} and ε ∈ {0, 0.05, 0.1}.

2. Repeat L = 1000 times (l = 1, . . . , L)

a) generate sample of size n

b) for each method (MLE, Med, MMe, WBY) calculate the estimate

β̃
(l)

n = (β̃
(l)
n0 , β̃

(l)
n1)T of the true parameter β0

3. Output: the mean absolute errors

MAE(n) =
1

2000

1000∑
l=1

(∣∣∣β̃(l)
n0 − β00

∣∣∣+
∣∣∣β̃(l)
n1 − β01

∣∣∣) .
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Figure 2. Mean absolute errors (MAE) for data without contamination

The obtained results are presented in Figure 2 for non-contaminated data
and in Figure 3 for data with outliers. First of all one can see that there is a
clear gain of precision of the MMe-estimator with respect to the original Med-
estimator. This e�ect is visible particularly in the parts for non-contaminated
data (ε = 0) and it is weakening with increasing sample size and level of
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Figure 3. Mean absolute errors (MAE) for data with 5% of outliers (left) and 10% of
outliers (right)

contamination. E.g. for n ∈ {500, 1000} and 10% of outliers (ε = 0.1) the
MME-estimator and Med-estimator are comparable in the sense of MAE.

Generally, if there is no contamination the MLE is clearly the best followed
by WBY-estimator and MMe-estimator. This picture, however, dramatically
changes with contamination of the data. For ε = 0.05 one can observe that
for smaller sample sizes (n = 50, 100) the WBY-estimator shows the best be-
havior and for larger sample sizes (n ≥ 250) MME-estimator has the smallest
MAE's. For larger contamination (ε = 0.1) the median based estimators seem
to be more resistent to distortion of the model than the WBY-estimator and
MLE.

3 Median based tests

As mentioned in the introduction, while the problem of parameter estimation
in logistic regression is widely studied in the literature, much less attention
has been paid to tests about parameters of these models. In this section we
propose a new statistics for testing general hypotheses about the parameter
β of the logistic regression model.
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3.1 Wald-type test

Based on the modi�ed median estimator, we de�ne a Wald-type test statistics
for the problem of testing

H0 : KTβ = m against H1 : KTβ 6= m, (13)

where KT is a matrix of dimension r × d and rank(KT ) = r and m is a
vector of order r such that rank(KT ,m) = r. For example, the considered
null hypothesis could be

H0 : β1 = β2 = ... = βd = 0 if KT = (Id×d), m = 0d,

or
H0 : βi = 0 if KT = (0, . . . , 0, 1, 0, . . . , 0)d, m = 0 .

The proposed Wald-type test statistic for testing the null hypothesis (13) is
given by

Wn(β̂) = n(KT β̂ −m)T
(
KT V̂n(β̂)K

)−1
(KT β̂ −m),

where β̂ is the MMe of β and V̂n(β̂) is an estimator of the asymptotic
covariance matrix of the modi�ed median estimator. For more details see
[13]. The classical Wald type test statistic based on maximum likelihood
estimator, for this problem, can be seen for instance in [10].

In [13] we show that under some regularity assumptions the asymptotic
distribution of our Wald-type test statistics is a chi-square distribution with
r degrees of freedom and we derive approximation of the power function of
the proposed test.

Let us now illustrate performance of the introduced test statistics by some
results of a simulation study done in [13]. We compare behavior of three tests:

• the classical Wald test based on MLE

• the Wald-type test based on MMe-estimator

• the Wald-type test introduced in [2] and based on WBY-estimator.

We further consider two scenarios: sizes of the tests and powers of the tests
and two types of contamination: with outliers and with leverage points.
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3.2 Simulation experiment - sizes of tests

For comparison of sizes we use the same model as in [2]. In the case of outliers,
the response variables Yi are generated from the model

Yi ∼ (1− ε)Be
(
π
(
xTi β0

))
+ εBe

(
1− π

(
xTi β0

))
, (14)

with xi = (1, Ui1, Ui2), where Ui1, Ui2 are independent and N(0, 1) dis-
tributed and β0 = (0, 2, 2)T . In the case of leverage points, the data follow
the same but non-contaminated model (ε = 0)

Yi ∼ Be
(
π
(
xTi β0

))
(15)

and for each considered n 2% of misclassi�ed observations are added on a
hyperplane parallel to the true discriminating hyperplane xTβ with a shift
equal to m ×

√
2 and with the �rst covariate x1 around 3.

We consider the null hypothesis H0 : β0 = (0, 2, 2), we select n ∈
[50, 1000] and for each test we evaluate simulated sizes (frequencies of re-
jection) based on 5000 simulated samples.
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Figure 4. Simulated sizes in the non-contaminated case (left) and in the case with 2%
of outliers (right)

The observed frequencies of rejection are presented in Figures 4 and 5.
In Figure 4 we observe that for non-contaminated data all the test statistics
have simulated size reasonably close to the nominal level 0.05 at least for
sample sizes n ≥ 200. But for smaller sample sizes the robust tests seem
to be approximately reliable too. Under contamination with outliers the test
based on the MMe-estimator is clearly the most stable one while the classical
Wald test is the worst one. In Figure 5 we see results for contamination with
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Figure 5. Simulated sizes in case with 2% of leverage points for m = 2 (left) and in the
case with 2% of leverage points for m = 4. (right)

misclassi�ed observations and the situation is quite di�erent. For m = 4,
when the misclassi�ed observations are further away from the discriminating
hyperplane, the levels of the tests based on the MMe and WBY-estimators
remain very stable while the classical test breaks in level since the frequencies
of rejection under the null hypothesis are 1 or near to 1. For m = 2, when
the misclassi�ed observations are in fact more close to outliers, the situation
is more similar to that presented in Figure 4 and the test based on the MMe-
estimator has the best behavior.

So the main message from these �gures is that for huge leverage points,
the proposed test is comparable with the test based on WBY-estimator and
in the case of outliers, it is signi�cantly better.

3.3 Simulation experiment - powers of tests

Now we shift our attention to the powers of the Wald-type tests and we use
the same simulation scenario as used in [2] for the study of powers of their
WBY test statistics. Namely, the non-contaminated data are generated from
the model

Yi ∼ Be
(
π
(
xTi β

))
, where π

(
xTi β

)
=

exp (xTi β)

1 + exp (xTi β)
,

xTi = (1, Ui), Ui are i.i.d. N(0, 1), β = β0 + ∆c and β0 = (−2.82, 2.82)T .
We consider the hypothesis H0 : β = β0 and the direction in which we move
away from H0 is selected as c = (1, 1)T for ∆ ∈ (−1, 1.5). We further assume
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two types of contamination: with outliers and with leverage points. In the
�rst case data are generated from the ε-contaminated source

Yi ∼ (1− ε)Be
(
π
(
xTi β

))
+ εBe

(
1− π

(
xTi β

))
.

In the latter case non-contaminated sample is generated for ε = 0 and �ve or
ten distorted observations are added at points with y = 0 and xT = (1, 5).

According to the results obtained for levels of the tests we select the sam-
ple size n = 250 and for each considered value of parameter ∆ we generate
1000 samples and evaluate the simulated powers (frequencies of rejection)
for all the statistics under consideration. Results for non-contaminated case,
contamination with outliers and contamination with leverage points are pre-
sented in Figures 6, 7, and 8, respectively.
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Figure 6. Simulated powers in the non-contaminated case

In Figure 6 one can observe that in the non-contaminated case the powers
of the proposed test are comparable with the powers of the remaining two
tests. However, with increasing level of contamination with outliers, the be-
havior of the test based on the MME-estimator seems to be the most stable
as can be seen in Figure 7.

Under contamination with distorted observations, we see in Figure 8 that
the Wald-type tests based on the MME and WBY-estimators show very sta-
ble performance with almost the same power as for the non-contaminated
samples while the classical Wald test becomes non-informative since the
power function equals 1 for any value of parameter ∆.
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Figure 7. Simulated powers in the case with 2% of outliers (left) and in the case with
5% of outliers (right)
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Figure 8. Simulated powers in the case with 5 leverage points (left) and in the case
with 10 leverage points (right)

4 Conclusion

To summarize the lecture into a few main points, we can say the following.

• The new modi�ed median estimator appears to be more robust than
compared tests for larger sample sizes and higher level of contamination.

• For huge leverage points, the proposed test is comparable with the test
based on WBY.

• In the case of outliers, the proposed test is signi�cantly better than
WBY-based test.
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• Statistical smoothing can also be applied to integer valued observations
Y in other discrete models. This makes the statistical methods, devel-
oped for continuous models, more widely applicable in discrete statistics
than just in the particular situation studied in this lecture.
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