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Summary

For hydrodynamic simulations, the Arbitrary Lagrangian-Eulerian (ALE)
methods represent one of few state of the art numerical approaches, which
are efficient, accurate, and robust enough for realistic calculations. In
this approach, an accurate Lagrangian solver is used to advance the so-
lution along with the computational mesh in time, while its robustness is
achieved by rezoning (smoothing) of the mesh. The last step of a typical
indirect ALE method is remapping, conservatively transferring all fluid
quantities from the Lagrangian to the rezoned computational mesh.

Here, we briefly review all three stages of an indirect ALE method: the
Lagrangian solver, mesh rezoner, and quantity remapper. Most attention
is paid to the remapping stage in the staggered discretization in both
single- and multi-material situations, where most research of the author
was conducted. A typical application from the field of hydrodynamic sim-
ulations of laser-plasma interactions is presented, demonstrating viability
of the developed methods in realistic calculations.
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Souhrn

Jednou z mála numerických metod pro hydrodynamické simulace, které
jsou v současné době považovány za dostatečně efektivńı, přesné a ro-
bustńı, jsou metody lagrangeovsko-eulerovské (ALE). Tento př́ıstup vyu-
ž́ıvá přesného lagrangeovského řešiče, který posouvá řešeńı v čase spolu
s výpočetńı śıt́ı, přičemž robustnosti metody je dosaženo regularizaćı
(vyhlazováńım) śıtě. Posledńım krokem typické nepř́ımé ALE metody
je remapováńı, konzervativně přesouvaj́ıćı všechny veličiny dané tekutiny
z lagrangeovské výpočetńı śıtě na vyhlazenou.

V této práci stručně poṕı̌seme všechny fáze nepř́ımé ALE metody, a
sice lagrangeovský řešič, vyhlazováńı śıt́ı a remapováńı stavových veličin.
Nejv́ıce pozornosti věnujeme fázi remapováńı ve stř́ıdavé diskretizaci pro
jednomateriálové a v́ıcemateriálové problémy, kde autor přispěl svoj́ı praćı
nejvýznamněji. V závěru práce je prezentována typická aplikace z oblasti
hydrodynamických simulaćı interakćı laseru s plazmatem, demonstruj́ıćı
použitelnost vyvinutých metod pro realistické výpočty.
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1 Introduction

In the numerical hydrodynamics simulations, the choice of the compu-
tational mesh is crucial. Traditionally, there have been two viewpoints
utilizing the Lagrangian or the Eulerian framework, each with its own
advantages and disadvantages.

The class of Eulerian methods employs a computational mesh, which
remains unchanged during the whole simulation, and the fluid moves
through the edges (faces) of the mesh cells in the form of mass fluxes.
This approach is not well suited for certain types of simulations, typically
involving strong material compressions or expansions, which is a common
situation in the field of plasma hydrodynamics.

In the Lagrangian methods, the computational mesh moves with the
fluid and no mass fluxes between the computational cells are present. The
motion of the mesh naturally follows the fluid motion, so the computa-
tional domain changes adaptively as necessary even for strong material
deformations. This is the main reason, why mostly methods based on the
Lagrangian concept are used in laser-plasma hydrodynamics. The main
disadvantage of the Lagrangian methods results from the mesh motion –
the computational mesh can distort and invalid (non-convex, flipped, or
negative-volume) cells can appear, which typically results in simulation
failure.

In a pioneering paper [33], Hirt et al. developed the formalism for a
mesh whose motion could be determined as an independent degree of free-
dom, and showed that this general framework could be used to combine
the best properties of the Lagrangian and Eulerian methods. This class of
methods has been termed Arbitrary Lagrangian-Eulerian or ALE. Many
authors have described the ALE strategies to optimize accuracy, robust-
ness, or computational efficiency, see for example [14, 63, 22, 56, 61, 12,
54].

In this text, we primarily focus on the indirect ALE methods, which
can be typically split in three distinct steps:

1. Lagrangian solver, advancing the fluid quantities and the computa-
tional mesh to the next time level;

2. mesh rezoner, untangling and smoothing the mesh when its geomet-
ric quality becomes low;

3. remapper, conservatively interpolating (transferring) all fluid quan-
tities from the Lagrangian to the rezoned mesh.

After a short discussion of the numerical methods, a typical application
from the field of laser-plasma interactions is presented.
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2 Arbitrary Lagrangian-Eulerian Methods

The indirect Arbitrary Lagrangian-Eulerian methods combine an explicit
Lagrangian solver with an Eulerian step, consisting of mesh rezoner and
quantity remapper. Here, we briefly discuss each step with a special focus
on the last part – the remapper.

2.1 Lagrangian Solver

The fluid hydrodynamics can be described by the set of Euler equations
in the Lagrangian formulation,

1

ρ
ρt = −∇ · ~u , ρ ~ut = −∇p , ρ εt = −p∇ · ~u , (1)

representing continuity of mass, equation of motion, and evolution of the
internal energy. Here, ρ is fluid density, ~u is the velocity vector, p is
pressure, and ε stands for the specific internal energy. The system is closed
by a particular equations of state p = P(ρ, ε) and the computational mesh
motion is defined by ~xt = ~u.

Numerical methods for solving this non-linear system can be char-
acterized either as cell-centered or staggered. The class of cell-centered
methods uses cell-centered discretization of all fluid quantities and is be-
coming very popular during recent years [62, 61, 29, 28], because it allows
a simpler approach for remapping. Here, we focus on the more stan-
dard staggered discretization, which present in most hydrodynamic codes
nowadays.

On the other hand, the staggered hydrodynamic solvers utilize cell-
centered discretization for thermodynamic (scalar) quantities only, while
the remaining kinematic (vector) quantities are located on the mesh nodes.
This allows a more natural treatment of realistic boundary conditions,
which is crucial in realistic applications. The compatible method based
on mimetic operators [19] is one of the most popular. Its main idea is
the computation of pressure-gradient forces around each node, affecting
its velocity. Similarly, other needed types of forces can be constructed,
such are the artificial viscosity forces stabilizing the solution at shocks, the
subzonal pressure forces acting against the pathological hourglass modes,
gravity forces, elastic forces, etc. The same forces are reused in the compu-
tation of work due to deformation of the particular cell, which contributes
to the internal energy change in the energy equation. The resulting nu-
merical scheme is conservative in all quantities and second order accurate.
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2.2 Mesh Rezoning

Rezoning fixes the computational mesh after it has been disturbed during
the Lagrangian step. It can either smooth the mesh in the sense that a
particular measure of its geometric quality (such as the condition number
CN) is improved. The second possibility is mesh untangling, fixing severe
mesh deformations resulting in overlapping or inverting of the mesh cells.

There exist a large number of methods for mesh rezoning, both general
and application-specialized. Many simple and efficient methods based
on averaging of nodal coordinates exist, such as the Laplacian [32] or
Winslow [74, 39] algorithms. Direct local or global optimization of the
CN operator [27] or its more sensitive optimization respecting the mesh
reference Jacobians [40] can be used. For mesh untangling, modification
of the CN operator has been developed [24], or one can switch to purely
geometric methods, such an explicit construction of the nodal feasible
set [16].

In a typical simulation, just minimal mesh motion is recommended
as the following remapping step produces excessive numerical diffusion
if the nodes move too severely. For an example of a deformed (old, La-
grangian) and smoothed (new, rezoned) computational mesh (obtained
from the Lagrangian mesh by the application of the Winslow rezoning
algorithm), see Figure 1. As we can see, both meshes are very close to
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Figure 1: (a) Old (Lagrangian) mesh and (b) new mesh obtained from
the old one with the Winslow rezoning algorithm.

each other and contain the same features. However, the rezoned mesh is
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both numerically and even visually smoother, and more suitable for the
following Lagrangian step.

2.3 Conservative Remapping

Remapping is of the key steps of a typical ALE algorithm, transferring
conservatively all fluid quantities from the Lagrangian mesh to the rezoned
one. We assume, that (as a result of the Lagrangian step) we know the
geometry of the old and new meshes, and all Lagrangian fluid quantities
inside the old cells as well as the nodal velocities. In the multi-material
case, the material quantities need to be known also, in particular the
knowledge of material volume fractions, eventually material centroids, is
necessary. As a result, we want to compute the same quantities on the
new mesh so that the remapping process satisfies the following properties:

• accuracy – at least second-order of accuracy is necessary to avoid
excessive diffusion of the solution;

• continuity – if the computational mesh does not change, no quantity
is supposed to change;

• conservation – fluid mass, volume, and internal energy have to be
conserved (per material in case of multi-material remap);

• efficiency – all geometrical calculations are done only once, at the
beginning of the remapping process.

In the following sections, the basic numerical approaches for remap-
ping are summarized, with a special focus on multi-material remap in the
context of multi-material ALE algorithms.

2.3.1 Function reconstruction

In order to achieve second-order accurate remapping scheme, function
reconstruction must be performed to approximate the unknown function
profile from the discrete data. Let us assume that there exist an unknown
density function ρ(x, y). Mass of each computational cell c is obtained
as mc =

∫
c
ρ(x, y) dx dy and its density as ρc = mc/Vc, where Vc is cell

volume computed from its geometry.
To approximate the density function in the mesh cells, a piece-wise

linear function in the form

ρc(x, y) = ρc + Sxc (x− xc) + Syc (y − yc) (2)

is typically used, where [xc, yc] are the coordinates of the cell centroid.
The main task of the reconstruction is the definition of the density slopes
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Sxc = (∂ρ/∂x)c and Syc = (∂ρ/∂y)c from the discrete mean values ρc.
One of possible approaches is their computation by minimization of an
error functional, measuring the difference (in the least-squares sense) of
the linear function from the neighboring mean values [66, 48]. To avoid
oscillations in the remapped quantity, limiting [13] of the slopes is typically
used.

2.3.2 Intersection-based remap

The intersection-based remap (reviewed in [64]) is the most natural ap-
proach for conservative transfer of conservative quantities between general
computational meshes. The new mesh cell c̃ can be composed from its
intersections with all cells of the original mesh,

c̃ =
⋃

c′∈{c}

c̃ ∩ c′ , (3)

as shown in Figure 2 (a). Then, remap of mass can be written in the form

c ∩ c̃

c
∩
c̃′

∆
e

(a) (b) (c)

Figure 2: Comparison of basic remapping methods: (a) intersection-
based remap; (b) intersection-based remap in a flux form; (c) swept-based
remap. Old mesh is shown in red and new one in black color.

mc̃ = I
ρ(x,y)
c̃ = I

ρ(x,y)
∪c′∈{c}c̃∩c′ =

∑
c′∈{c}

I
ρ(x,y)
c̃∩c′ ≈

∑
c′∈{c}

I
ρc′ (x,y)
c̃∩c′ , (4)

where IfP represents integral of an arbitrary function f over polygon p,

IfP =
∫
P
f(x, y) dx dy.

For topologically close meshes, this approach can be formulated in a
flux form derived in [23, 64], which is based on adding and removing of
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pieces of the Lagrangian cell in order to obtain the rezoned one,

c̃ = c ∪
⋃

c′∈C(c)

((
c̃ ∩ c′

)
\
(
c ∩ c̃′

))
, (5)

as shown in Figure 2 (b). The mass remap can be formulated in an
equivalent flux form

mc̃ = mc +
∑

c′∈C(c)

Fmc,c′ , (6)

where the mass fluxes Fm are composed from their positive and negative
contributions,

Fmc,c′ = I
ρc′ (x,y)
c̃∩c′ − Iρc(x,y)

c∩c̃′ . (7)

These fluxes represent the masses of all the intersections, and in practice,
by using (2), they can be composed from the exchange integrals I1, Ix,
Iy, (i.e. integrals of simple polynomials pre-computed at the beginning
of the remapping step from the geometry of the intersections). Similar
formula can be used for other quantities, for examples of nodal momenta
or cell internal energy, see [48, 46].

2.3.3 Swept-region-based remap

A swept region [23] ∆e is defined by the motion of a particular edge e
between cells c and c′ into its new position ẽ during rezoning. There always
exist one quadrilateral swept region for each cell edge, see Figure 2 (c).

This allows remap of cell mass to be written in a flux form

mc̃ = mc +
∑

e∈E(c)

Fme , (8)

where E(c) stands for a set of all edges of cell c, and where the mass
fluxes are computed as integrals of the reconstructed density over the
swept regions

Fme = I
ρc∗ (x,y)
∆e

. (9)

The reconstruction ρc∗(x, y) is taken from cell c∗, which is either the
original cell c or its neighbor c′ over the edge e, depending on the sign of
algebraic area of ∆e. The integral in the swept mass Fme can be again
composed from the pre-computed exchange integrals I1

∆e
, Ix∆e

, and Iy∆e
.

Compared to the intersection-based remap (6), no corner fluxes exist.
The swept region methods are more popular in real ALE codes due

to their efficiency and robustness, resulting from the avoidance of the
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expensive and implementation-sensitive intersections. On the other hand,
a special treatment for fixing the generated overshoots may be required,
such as the a posteriori mass redistribution [50, 65, 58], the Flux-Corrected
Transport (FCT) [51], or the Multi-dimensional Optimal Order Detection
(MOOD) [20]. The swept region approach can be naturally extended to
3D [31] and for changing connectivity meshes [45].

2.3.4 Multi-material remap

In multi-material ALE, more than one material is permitted in each com-
putational cell. This approach allows to treat different materials properly,
without their artificial mixing, and leads to a significant improvement of
the simulation reliability. Many authors have been working on different
aspects of multi-material ALE in recent years [68, 1, 73, 42, 11, 70, 44,
29, 30, 69, 18, 26, 28, 12].

In this approach, different materials k in cell c are typically represented
as polygons ck produced by a particular material-reconstruction method,
see [44] for a comparison of several most popular approaches. The volume
of the material Vc,k can be normalized and represented in the form of
material volume fractions αc,k = Vc,k/Vc, its geometric center (centroid)
xc,k = Ixck/I

1
ck

, yc,k = Iyck/I
1
ck

is typically used to represent the material
approximate position in the cell.

The intersection-based remap is preferred for multi-material problems
as its generalization is straightforward – the new cell is intersected with
the particular pure material polygon instead of the whole original cell, as
shown in Figure 3 (a), (b). The material mass remap (6) can be formulated
as

mc̃,k = mc,k +
∑

c′∈C(c)

Fmc,c′,k , (10)

and the material k mass fluxes are

Fmc,c′,k = I
ρc′,k(x,y)

c̃∩c′k
− Iρc,k(x,y)

ck∩c̃′ . (11)

The density reconstructions ρc,k(x, y) are obtained in the same piece-wise
linear manner as (2), for each material separately.

2.3.5 Hybrid remap

One possible approach for an efficiency improvement of multi-material
remapping is the hybrid remapping concept introduced in a series of pa-
pers [43, 15, 47]. In this approach, both intersection- and swept-based
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Figure 3: Multi-material remap: (a) two materials (red r and blue b) in
the Lagrangian (red) mesh; (b) flux between cells c and c′ split in two
materials (green polygons), new mesh is shown in black color.

methods are combined in such a way, that the computationally expen-
sive intersections are used only in the vicinity of material interfaces, while
efficient swept-regions are employed inside pure material regions cover-
ing most of the computational domain. To keep consistency, a special
treatment compatible with both approaches needs to be performed at the
buffer region, where both methods meet.

In [43], the basic concept of hybrid remapping method was introduced
and situation for logically-rectangular meshes is analyzed. To be able
to use the hybrid remap in a general polygonal mesh, the whole process
has been separated in two distinct steps in [15]. In the first step, only
nodes belonging to the single-material cells are moved during rezoning,
and remap is performed with fluxes computed by swept regions only. In
the second step, the remaining mixed nodes are rezoned and remap is
done with intersections. Finally, in [47], a complex one-step approach
has been developed, treating all fluxes in the same swept-like manner,
avoiding certain symmetry problems arising from a different treatment of
mixed and pure nodes in the two-step method.

The concept of hybrid remapping can be applied also in the single-
material case [35]. The main motivation is the accuracy of the remap-
ping scheme, especially from the point of view of symmetry violations
caused by the swept-based remapping scheme. Following preliminary
works from [64] and [52], a full analysis of the local error of both meth-
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ods has been performed in [37], identifying function properties and mesh
motion patterns, for which each method is more accurate. Based on this
analysis, several switches has been designed to switch between the meth-
ods in [36]. This method allows to perform remapping efficiently while
keeping low numerical error of the scheme and preserving function sym-
metry for non-conformal meshes.

2.3.6 Remap of all fluid quantities

Up to now, remap of a single conservative quantity (fluid mass) has been
considered. However, for the following Lagrangian solver, the complete set
of fluid quantities has to be remapped in a consistent way. An extensive
review of available methods is included in the seminal paper [14].

Due to different different location of various quantities in the stag-
gered discretization, remapping of the whole set of fluid quantities is rather
complicated. There exist several papers, addressing the remapping strate-
gies in the staggered discretization, see for example [57, 59, 25, 55, 17].
In the preliminary work [46] and the full paper [48], a new approach
for remapping of multi-material quantities in staggered discretization has
been introduced. This scheme has been further studied with respect to
its bound-preservation in [49]. All quantities are remapped in a flux form
– material quantities (volume fractions and centroids) and material mass
are remapped in the form (10). For the internal energy, a more complex
flux structure must be used [23] to achieve consistency with mass remap.
While material pressures are computed from the equation of state, a sim-
ilar remap in a flux form has been designed for remap of (p V )c in order
to obtain new average cell pressure needed for the construction of the
pressure forces in the following Lagrangian step.

A special attention is paid to remap of nodal quantities. Nodal mass
is remapped in a similar flux-form

mñ = mn +
∑

n′∈N(n)

Fmn,n′ , (12)

where the inter-nodal mass fluxes Fmn,n′ are interpolated from the inter-
cell ones. Remap of the remaining nodal quantities (momentum compo-
nents and kinetic energy) is performed in the same flux form (12), and
the appropriate fluxes are constructed by attaching the particular recon-
structed quantity to the inter-nodal mass fluxes. To avoid oscillations in
the remapped quantities, the FCT scheme [51] is used for flux reduction.
In [71] and [72], the FCT approach has been redesigned with a focus on
the symmetry of the resulting velocity field. Total energy conservation vi-
olation resulting from the kinetic energy non-linearity is typically enforced
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by the standard energy fix [14]. Moreover, a new approach inspired by [10]
has been designed [9], creating the velocity reconstruction in such a way
that the kinetic energy discrepancy is minimized.

This newly developed remapping approach is consistent, second-order
accurate for all quantities, respects their continuity and conservation, and
keeps their local bounds. Its efficiency is achieved by construction of all
fluxes from the pre-computed exchange integrals. It has been demon-
strated [48] that it is applicable to a broad range of multi-material high-
accuracy ALE simulations.

3 Selected Application in Laser-Plasma Hy-
drodynamics

The described numerical methods have been implemented in the frame-
work of the in-house Research Multi-Material ALE (RMALE) code, the
test platform for evaluation of properties of the newly developed numerical
methods. The methods, which proved their viability and usefulness have
been incorporated in the Prague ALE (PALE) hydrodynamic code, result-
ing from the research on ALE methods conducted at the Department of
Physical Electronics. This code is primarily intended for the simulations
of laser/plasma interactions.

The PALE code solves the system of Euler equations (1) enhanced by
the models of laser absorption and heat conductivity [53], with a realistic
QEOS equation of state [67]. It is routinely used for simulations of experi-
ments performed at the PALS laser facility [34], for a set of representative
examples, see for example [54]. Here, we briefly present one particular
application of the newly developed numerical methods for laser-generated
plasma in the framework of the PALE hydrodynamic code.

The high-velocity impact of a laser-driven projectile using the LICPA
scheme [3] has been investigated. This scheme is shown in Figure 4 and
resembles the classical cannon ball setup – the laser beam enters small
cavity, evaporates material of a heavy projectile (eventually covered by
a layer of a low-Z ablator), which is ablatively accelerated and hits the
massive target. Due to the cavity, only a small portion of the laser beam
energy is allowed to escape and its most significant part is converted into
the energy of the moving projectile and eventually into the energy of the
spreading shock wave after the impact. Efficiency of this scheme is signifi-
cantly higher than that of the standard ablative acceleration. In a series of
paperes [5, 41, 60, 4, 7, 8, 2, 6], different setups of the LICPA scheme have
been investigated numerically and experimentally at the PALS laser facil-
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Figure 4: Setup of the cylindrical LICPA scheme.

ity. In particular, different projectile materials/widths and different laser
energies/wavelengths has been studied, as well as different massive target
materials. All phases of the experiments has been studied numerically,
such as laser absorption process, ablative acceleration of the projectile,
its motion through the guiding channel and impact on the massive target,
formation of a generated shock wave, its spreading through the massive
target, melting and evaporation of the target material, and development
of a crater. For an example of a 200 J at 3ω laser pulse accelerating a
2.8µm Au projectile covered by a 5µm CH ablator, hitting an Al massive
target [6], see Figure 5. Several plasma quantities have been compared
with the experimental results – velocity, temperature, and density profile
of the impacting projectile, or shape and volume of the generated crater.
It has been demonstrated that the numerical results correspond reason-
ably well (both quantitatively and quantitatively) to the experimental
data.

4 Conclusions

In this study, we have summarized the numerical algorithms and contribu-
tions of the author in the field of Arbitrary Lagrangian-Eulerian methods,
especially for conservative remapping of fluid quantities. The described
numerical methods have been tested in the context of a research RMALE
code and selected methods were implemented in the hydrodynamic code
PALE, which is under development in our research group, helping to im-
prove its reliability, accuracy, robustness, stability, and efficiency. Beside
the numerical methods, one selected application has been presented to
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Figure 5: Numerical simulation of 200 J , 3ω laser pulse, Au projectile, and
Al massive target at different times after the pulse maximum: (a) density
profile [g/cm3] during laser absorption at ablator/projectile interface; (b)
density profile [g/cm3] of the projectile before the impact; (c) density
profile [g/cm3] of shock wave formation after the impact; (d) temperature
profile [eV ] inside the crater.

show applicability of the developed approaches in realistic laser-plasma
calculations, and their viability in a staggered ALE code. Next to the
demonstration of the methods’ properties and suitability, several signif-
icant contribution to the research on the physics of laser/plasma inter-
actions have been made, mostly motivated by the study of the inertial
confinement fusion physics.

Nevertheless, there still exist many unsolved problems in the theory
of ALE methods and conservative interpolations, providing a large room
for future research in this field. As examples, let us mention three impor-
tant topics which require more detailed investigation. The first topic is the
problem of energy conservation due to the non-linear dependence of kinetic
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energy on the remapped velocity. Although there exist approaches min-
imizing this discrepancy [9], a new, consistent, fully minimization-based
remapping approach needs to be designed to eliminate it completely. The
second future topic is related to the multi-material elastic/plastic simula-
tions, which are well investigated in the Lagrangian framework, however,
remap (and especially limiting [38]) of the involved stress tensor with
respect to preserving its invariants is very important for full ALE sim-
ulations. Finally, let us mention the problem of remapping in case of
curvilinear computational meshes [21], which is a modern and fast evolv-
ing concept nowadays. Not much work has been done in the investigation
of intersections and integration along curved edges, and an increasing
demand for a curvilinear remap is expected in the near future.
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and Florence Hubert, editors, Finite Volumes for Complex Applications
VI Problems & Perspectives, volume 1 of Springer Proceedings in Mathe-
matics, pages 623–631. Springer, 2011.

[47] M. Kucharik and M. Shashkov. One-step hybrid remapping algorithm for
multi-material arbitrary Lagrangian-Eulerian methods. J. Comput. Phys.,
231(7):2851–2864, 2012.

[48] M. Kucharik and M. Shashkov. Conservative multi-material remap for
staggered multi-material arbitrary Lagrangian-Eulerian methods. J. Com-
put. Phys., 258:268–304, 2014.

[49] M. Kucharik and M. Shashkov. Bound-preserving remapping of stag-
gered quantities for multi-material ALE methods. AIP Conf. Proc.,
1863(1):030025, 2017.

[50] M. Kucharik, M. Shashkov, and B. Wendroff. An efficient linearity-and-
bound-preserving remapping method. J. Comput. Phys., 188(2):462–471,
2003.

[51] D. Kuzmin, R. Lohner, and S. Turek, editors. Flux Corrected Transport:
Principles, Algorithms, and Applications. Scientific Computation Series.
Springer-Verlag New York, LLC, 2005.

[52] P. H. Lauritzen, Ch. Erath, and R. Mittal. On simplifying ’incremental
remap’-based transport schemes. J. Comput. Phys., 230(22):7957–7963,
2011.

[53] R. Liska and M. Kucharik. Arbitrary Lagrangian Eulerian method for
compressible plasma simulations. In M. Fila, A. Handlovicova, K. Mikula,
M. Medved, P. Quittner, and D. Sevcovic, editors, Proceedings of EQUAD-
IFF 11, International Conference on Differential Equations, pages 213–
222. STU, 2007. ISBN 978-80-227-2624-5.

[54] R. Liska, M. Kucharik, J. Limpouch, O. Renner, P. Vachal, L. Bednarik,
and J. Velechovsky. ALE methods for simulations of laser-produced plas-
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