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Summary

Symmetries of physical systems are essential for construction and mathema-
tization of the related physical theories and models. The classical theory of
Lie algebras and their Weyl groups establishes a connection between group
theory and modern physics. Multivariate exponential functions associated to
crystallographic root systems of complex simple Lie algebras and their cor-
responding a�ne Weyl groups constitute a standard segment of Lie theory
and its application in mathematical physics. As signed sums of the multi-
variate exponential functions, the complex-valued Weyl orbit functions and
real-valued Hartley orbit functions represent generalizations of the classical
trigonometric functions. The set of multivariate generalizations of the cosine
and sine functions is further enriched using the concept of sign homomor-
phisms. The Fourier{Weyl and Hartley{Weyl discrete transforms incorporate
kernels of the Weyl and Hartley orbit functions, respectively, and are con-
structed on �nite fragments of the Weyl group invariant lattices. The weight
lattice Fourier{Weyl transforms are linked to the dual Kac{Walton formulas
and to the Kac{Peterson matrices in conformal �eld theory. Subtraction of
the weight and root lattice Hartley{Weyl transforms for the A2 case gener-
ates the honeycomb lattice transforms that are applied to vibrations of the
mechanical graphene model.
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Souhrn

Symetrie fyzikálních systémù jsou zásadní pro konstrukci a matematizaci
odpovídajících fyzikálních teorií a modelù. Klasická teorie Lieových algeber
a jejich Weylových grup urèuje spojení mezi teorií grup a moderní fyzikou.
Exponenciální funkce více promìnných pøíslu¹ející krystalogra�ckým koøe-
novým systémùm komplexních Lieových algeber a jejich a�nních Weylových
grup tvoøí standardní èást Lieovy teorie a její aplikace v matematické fy-
zice. Vytvoøeny jako sumy se znaménky exponenciálních funkcí více promìn-
ných, komplexní Weylovy orbitové funkce a reálné Hartleyho orbitové funkce
pøedstavují zobecnìní klasických trigonometrických funkcí. Soubor zobec-
nìných cosinù a sinù je dále obohacen u¾itím konceptu znaménkových ho-
momor�smù. Fourierovy{Weylovy a Hartleyovy{Weylovy diskrétní transfor-
mace, obsahující Weylovy a Hartleyho orbitové funkce, jsou zkonstruovány
na koneèných fragmentech møí¾í, které jsou invariantní vùèi Weylovým
grupám. Fourierovy{Weylovy transformace na váhových møí¾ích jsou dány
do souvislosti s duálními Kacovými{Weylovými formulemi a Kacovými{
Petersonovými maticemi z konformní teorie pole. Odeètení Hartleyových{
Weylových váhových a koøenových transformací algebry A2 generuje trans-
formace na plástvové møí¾ce, které jsou aplikovány na vibrace mechanického
modelu grafénu.
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1 Introduction

Continuous and discrete symmetries of physical systems are fundamental for
construction and mathematization of the related physical theories and mod-
els. Group theory forms a central part of mathematical description and anal-
ysis of the inherent symmetries. The classical theory of Lie groups and Lie
algebras establishes an essential connection between group theory and mod-
ern physics. Multivariate exponential functions associated to crystallographic
root systems of complex simple Lie algebras and their corresponding a�ne
Weyl groups constitute a standard segment of Lie theory and its application
in mathematical physics [1, 13]. The Weyl orbit functions are embedded in
conformal �eld theory [4] and appear implicitly in solid state physics [17].

The Weyl orbit functions represent multivariate generalizations of the
classical trigonometric functions [1,13]. Symmetric sums of exponential func-
tions, directly connected to multivariate versions of Chebyshev polynomi-
als [1], are named C−functions in [15, 16] and serve as generalizations of
the cosine function. Antisymmetric S−functions from the Weyl character
formula lead to generalizations of the sine function. Symmetry and antisym-
metry properties of the C− and S−functions with respect to their inherent
Weyl groups together with the translation invariance by shifts from the dual
root lattice permit restrictions of these functions to the fundamental domains
of their a�ne Weyl groups [13]. The fundamental domains in the form of the
Weyl alcoves constitute generalizations of the one-dimensional interval as do-
main for the classical cosine and sine functions [13]. The dual root system
and the dual a�ne Weyl group �rst appear in the description of the labels
of the C− and S−functions and the corresponding fully explicit form of the
dual weight{lattice Fourier{Weyl transforms [10]. The boundary behavior
of the hybrid orbit functions with respect to both point and label domains
results in the corresponding hybrid Fourier{Weyl transforms in [9].

Conformal �eld theories with the Lie group symmetry regularly utilize
the antisymmetric Weyl orbit functions and their discrete weight lattice
Fourier{Weyl transforms [4, 19]. A correspondence between the dual weight
discretization of Weyl orbit functions and a�ne modular data associated with
conformal �eld theories is developed in [11]. Products of the discretized orbit
functions are analogous with truncations of tensor products which determine
interactions in the conformal �eld models. A signi�cant tool for description
of the tensor products, which leads to an e�cient algorithm for calculation
of the fusion coe�cients, is the Kac{Walton formula [4]. The generalization
of the Kac{Walton formula for the dual weight lattice Fourier{Weyl trans-
forms from [10] and the related Galois symmetries are developed in [11].
Three additional generalizations of the Kac{Peterson unitary and symmetric
S−matrices resulting from the symmetric and hybrid Weyl orbit functions are
constructed in [12]. Apart from conformal �eld theory, the Fourier{Weyl and
Hartley{Weyl transforms found also direct applications to eigenvibrations of
mechanical models in solid state physics.
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The 2D and 3D mechanical vibration models based on the Fourier{Weyl
transforms retain Weyl group symmetries and determine vibrations of the
Weyl group invariant lattices. General cases of the mechanical vibration
models in solid state physics constitute fundamental stepping stones for their
quantum �eld versions [5]. Dispersion relations of these models are system-
atically derived in solid state physics assuming solutions in exponential form
while imposing periodic Born{von Kármán boundary conditions. The Hart-
ley orbit functions represent multidimensional generalizations of the cosine
and sine standing waves solutions of the one-dimensional beaded string sub-
jected to Neumann and Dirichlet conditions, respectively. The spectral analy-
sis of initial conditions provided by the Hartley{Weyl transforms enables cal-
culation of time evolving exact solutions of the mechanical models. A special
case of such mechanical models, the mechanical graphene model [3], is cur-
rently intensively investigated [14] in connection with the relevant graphene
material [5]. Transversal eigenvibrations of the equilateral triangular sheets
of the mechanical graphene and the wave functions of the quantum parti-
cle on the same triangular honeycomb point set [17] are determined by the
honeycomb Hartley and Weyl orbit functions from [7].

2 A�ne Weyl groups

To each complex simple Lie algebra from the four in�nite series and the �ve
exceptional cases corresponds the set of vectors ∆ = {α1, . . . , αn} ⊂ Rn, that
are called simple roots [1]. Each set of simple roots ∆ constitutes a non-
orthogonal basis of the Euclidean space Rn with the standard scalar product
〈·, ·〉. There are two types of the sets of simple roots ∆. The �rst type of ∆
consists of the roots of one length only and comprises the series An (n ≥ 1),
Dn (n ≥ 4) and three special cases E6, E7, E8. The second type contains
roots with two di�erent lengths and is represented by the series Bn (n ≥ 3),
Cn (n ≥ 2) and two exceptional cases F4, G2. For the cases of ∆ with two
di�erent root-lengths, the set ∆ is disjointly decomposed into a set ∆s of
short simple roots and a set ∆l of long simple roots,

∆ = ∆s ∪∆l. (1)

Every simple root αi ∈ ∆ induces a reection ri and the set of reections
ri, i ∈ {1, . . . , n} generates a �nite Weyl group W of orthogonal operators.
Action of the Weyl group W on the set ∆ generates the root system Π,
Π = W∆. The current notion of the root system coincides with a more general
notion of root systems from the theory of Coxeter groups, the root systems
corresponding to the complex simple Lie algebras are called irreducible and
crystallographic [13].

The highest root ξ ∈ Π is expressed as a linear combination of the sim-
ple roots ξ = m1α1 + · · · + mnαn, with non-negative integer coe�cients
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m1, . . . ,mn ∈ N. The numbers q1, . . . , qn ∈ N associated to the marks via
relation

qi =
mi 〈αi, αi〉

2
, i ∈ {1, . . . , n}, (2)

are called the comarks. A circle inversion of simple roots αi ∈ ∆, α∨i =
2αi/ 〈αi, αi〉 , leads to a set of the vectors ∆∨ = {α∨1 , . . . , α∨n} that is also a
set of simple roots of some complex simple Lie algebra. The set ∆∨ generates
the entire dual root system via action of the Weyl group, Π∨ = W∆∨.

There are four classical Weyl group invariant lattices: the root lattice,
the dual weight lattice, the dual root lattice and the weight lattice. The root
lattice Q is the integer span of the set of simple roots ∆,

Q = Zα1 + · · ·+ Zαn.

The dual weight lattice P∨ is Z−dual to the root lattice Q,

P∨ = Zω∨1 + · · ·+ Zω∨n ,

where the vectors ω∨i are called the dual fundamental weights and are deter-
mined by the duality formula, 〈ω∨i , αj〉 = δij . The dual root lattice Q

∨ is the
integer span of the set of dual simple roots ∆∨,

Q∨ = Zα∨1 + · · ·+ Zα∨n .

The weight lattice P is Z−dual to the dual root lattice Q∨,

P = Zω1 + · · ·+ Zωn, (3)

where the vectors ωi are called the fundamental weights and are determined
by the duality formula, 〈ωi, α∨j 〉 = δij . The cone of the dominant weights is
given as

P+ = Z≥0ω1 + · · ·+ Z≥0ωn. (4)

The Gram determinant d of the α∨-basis determines the order of the
quotient group P/Q∨,

d = det〈α∨i , α∨j 〉 = |P/Q∨|. (5)

The group of shifts Q∨ generates the a�ne Weyl group W aff expressed
as the semidirect product,

W aff = Q∨ oW, (6)
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that induces the retraction homomorphism ψ : W aff → W . The group of

shifts Q generates the dual a�ne Weyl group Ŵ aff expressed as the semidirect
product,

Ŵ aff = QoW, (7)

that induces the dual retraction homomorphism ψ̂ : Ŵ aff →W .

The augmented dual a�ne Weyl group Ŵ aff
M is de�ned for any scaling

factor M ∈ N by relation

Ŵ aff
M = MQ o W. (8)

Any homomorphism σ : W 7→ {±1} is called a sign homomorphism [9].
The identity 1 and the determinant σe sign homomorphisms, which exist for
all Weyl groups W, are given on the generating reections ri, αi ∈ ∆ as

1(ri) =1,

σe(ri)=− 1.

For the root systems with two lengths of roots, the short and long sign
homomorphisms σs and σl are de�ned via decomposition (1) as

σs(ri) =

{
−1, αi ∈ ∆s,
1, αi ∈ ∆l,

σl(ri) =

{
−1, αi ∈ ∆l,
1, αi ∈ ∆s.

De�ning the product · of the sign homomorphisms pointwise [6], the resulting
two-element and four-element abelian groups are isomorphic to Z2 and the
Klein four-group, respectively.

The fundamental domains F and F∨ consist of exactly one point of each

W aff− and Ŵ aff−orbits, respectively. The order of the isotropy subgroup
StabW aff (a) of any point a ∈ Rn, de�nes for any M ∈ N a counting function
hM : Rn → N and a counting function ε : Rn → N by

hM (a) =
∣∣∣StabW aff

( a
M

)∣∣∣ , ε(a) =
|W |
h1(a)

. (9)

The signed fundamental domain F σ ⊂ F is given as

F σ =
{
a ∈ F

∣∣σ ◦ ψ (StabW aff (a)) = {1}
}

and the signed dual fundamental domain F σ∨ ⊂ F∨ is given as

F σ∨ =
{
a ∈ F∨

∣∣σ ◦ ψ̂ (Stab
Ŵ aff (a)

)
= {1}

}
. (10)
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3 Fourier{Weyl Transforms

The �rst major contribution of the author to the �eld of multivariate discrete
Fourier transforms is presented in paper [10], where the two standard cases
of discrete dual weight lattice Fourier{Weyl transforms of C−functions and
S−functions are developed. These two basic transforms are generalized to all
four sign homomorphisms in [9]. The Fourier-Weyl weight lattice transform
and its link to the Kac{Peterson matrices from conformal �eld theory is
developed in [12].

Two families of complex orbit functions ϕσb : Rn → C for any root system
together with two additional families for the systems with two root-lengths
are labeled by the labels b ∈ Rn and determined by the sign homomorphisms
σ via signed symmetrization of exponential functions over the Weyl group
W,

ϕσb (a) =
∑
w∈W

σ(w) e2πi〈wb, a〉, a ∈ Rn. (11)

Using the Hartley kernel functions [2] of the form cas a = cos a + sin a, the
real-valued Hartley orbit functions, introduced in [6{8], are given by

ζσb (a) =
∑
w∈W

σ(w) cas 2π〈wb, a〉, a ∈ Rn. (12)

For any waff ∈ W aff and a ∈ Rn the argument symmetry of Weyl orbit
functions is of the form

ϕσb (waffa) = σ ◦ ψ(waff) · ϕσb (a). (13)

Besides the argument symmetry (13) of the four types of orbit functions ϕσb ,
valid for any labels b ∈ P , a di�erent type of label symmetry is induced by
restricting the points to the re�ned weight lattice. For a point a ∈ 1

MP ,

M ∈ N together with any waff ∈ W aff and b ∈ Rn, the label symmetry of
orbit functions is of the form

ϕσ
Mwaff( b

M )(a) = σ ◦ ψ(waff) · ϕσb (a). (14)

Discrete values of both points a ∈ 1
MP and labels b ∈ P of the orbit functions

ϕσb (a) are due to the argument symmetries restricted to the set of points F σP,M ,

F σP,M =
1

M
P ∩ F σ, (15)

and due to the label symmetries restricted to the set of labels ΛσP,M ,

ΛσP,M = P ∩MF σ. (16)
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Relation (38) in [12] states that the cardinalities of the sets of labels and the
sets of points coincide for each case,

|ΛσP,M | = |F σP,M |.

The vector space FσP,M of complex functions f : F σP,M → C is equipped

with a scalar product containing as weight the counting function (9). This
weight lattice weighted scalar product is of the following form for any f, g ∈
FσP,M ,

〈f, g〉FσP,M =
∑

a∈FσP,M

ε(a)f(a)g(a). (17)

The orthogonality relations of weight lattice discretized orbit functions in
the Hilbert space FσP,M are summarized in Theorem 4.5 in [12]. Using the

numbers (5) and counting functions (9), the orthogonality relations are for
any labels b, b′ ∈ ΛσP,M of the form

〈ϕσb , ϕσb′〉FσP,M = d |W |MnhM (b) δb,b′ . (18)

The forward weight lattice Fourier{Weyl transform calculates for any

function f ∈ FσP,M its spectral transform f̂ : ΛσP,M → C by prescribing
for any b ∈ ΛσP,M the value

f̂(b) =(d |W |MnhM (b))−1
∑

a∈FσP,M

ε(a)f(a)ϕσb (a). (19)

Due to the orthogonality relations (18), the backward weight lattice Fourier{
Weyl transform returns the original function f ∈ FσP,M ,

f(a) =
∑

b∈ΛσP,M

f̂(b)ϕσb (a), a ∈ F σP,M . (20)

The symmetric generalized Kac{Peterson matrices Sσλ,µ, λ, µ ∈ ΛσP,k+qσ ,
determined by their entries

Sσλ,µ =
i
|Π|
2 ϕσλ

(
−µ
k+qσ

)
√
d(k + qσ)nhk+qσ(λ)hk+qσ(µ)

, (21)

are unitary due to the orthogonality relations (18). Note that the relations
M = k + qσ, depending on the comarks (2) and their signed version given
by relation (39) in [12], are substituted for the number M into (18). The
matrices Sσ

e

λ,µ coincide with the standard Kac{Peterson S−matrices [4].
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4 Modi�ed Multiplication and Honeycomb Trans-
forms

The contribution of the author to this �eld is demonstrated in paper [11],
where the multiplication formulas and their modi�cation, together with their
Galois symmetry, are presented. The generalization of the discrete Fourier{
Weyl and Hartley{Weyl transforms to honeycomb lattice, including the in-
terpolation tests, is presented in [7].

Products of two types of orbit functions ϕσλ and ϕσ
′
λ′ are decomposed into

the sums of orbit functions,

ϕσλ ϕ
σ′
λ′ =

∑
w∈W

σ′(w)ϕσ·σ
′

λ+wλ′ , (22)

and products of orbit functions ϕσλ(a) and ϕσ
′
λ (a′) are decomposed as

ϕσλ(a)ϕσ
′
λ (a′) =

∑
w∈W

σ′(w)ϕσ·σ
′

λ (a+ wa′). (23)

Besides the modi�ed multiplication, these general product-to-sum decompo-
sition formulas (22) and (23) are crucial for vibrations models with Neumann
and Dirichlet boundary conditions.

The product decomposition formulas (22) from [11] of the C−functions
are further expressed in the form,

ϕ1
λ(a)ϕ1

µ(a) =
∑
ν∈P+

〈C|CC〉νλ,µ ϕ1
ν(a) (24)

for all dominant weights λ, µ ∈ P+.
For the weights from the �nite set of labels λ, µ ∈ P ∩MF 1∨ and the

points from the re�ned dual weight point sets a ∈ P∨/M ∩ F 1, the modi�ed
multiplication product decomposition formulas are of the form

ϕ1
λ(a)ϕ1

µ(a) =
∑
ν∈PM+

M
〈C|CC〉νλ,µ ϕ1

ν(a).
(25)

The relations between the decomposition coe�cients form the dual weight
Kac{Walton formulas,

M
〈C|CC〉νλ,µ =

∑
w∈Ŵ aff

M

〈C|CC〉wνλ,µ . (26)

A speci�c subtractive contruction of the honeycomb lattice in terms of
the invariant root and weight lattices of the root system A2 is considered
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in [7]. The point set FQ,M is the intersection of the fundamental domain F
with the root lattice,

FQ,M = 1
MQ ∩ F. (27)

The honeycomb point set HM is obtained from the point set F 1
P,M by sub-

traction of FQ,M ,
HM = F 1

P,M \ FQ,M . (28)

The weight set Λ1
P,M is of the following explicit form,

Λ1
P,M =

{
λ1ω1 + λ2ω2 |λ0, λ1, λ2 ∈ Z≥0, λ0 + λ1 + λ2 = M

}
,

and the points from Λ1
P,M are described by their Kac coordinates as

λ = [λ0, λ1, λ2] ∈ Λ1
P,M . (29)

The action of the group ΓM = {1, γ1, γ2} on a weight [λ0, λ1, λ2] ∈ Λ1
P,M

is the cyclic permutation group action on the coordinates [λ0, λ1, λ2],

1[λ0, λ1, λ2] =[λ0, λ1, λ2],

γ1[λ0, λ1, λ2] =[λ2, λ0, λ1],

γ2[λ0, λ1, λ2] =[λ1, λ2, λ0].

The honeycomb weight set LM is given explicitly as,

LM =
{

[λ0, λ1, λ2] ∈ Λ1
P,M | (λ0 > λ1, λ0 > λ2) ∨ (λ0 = λ1 > λ2)

}
.

Propositions 3.3 and 3.4 in [7] relate the numbers of points and weights in
the honeycomb sets as

|LM | = 1
2 |HM | .

The honeycomb weight sets L6 and L7 are depicted in Figure 3 in [7].
The extended C−functions are for a �xed M ∈ N labeled by λ ∈ LM and

introduced by

Φ+
λ (x) = µ+,0

λ ϕ1
λ(x) + µ+,1

λ ϕ1
γ1λ(x) + µ+,2

λ ϕ1
γ2λ(x),

Φ−λ (x) = µ−,0λ ϕ1
λ(x) + µ−,1λ ϕ1

γ1λ(x) + µ−,2λ ϕ1
γ2λ(x),

(30)
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where µ±,0λ , µ±,1λ , µ±,2λ ∈ C denote for each λ ∈ LM six extension coe�cients.

The extension coe�cients µ±,kλ given by

µ±,0λ = Re
{

(3 +
√

3 i)ϕ1
λ

(
ω1
M

)}
,

µ±,1λ = 0,

µ±,2λ = Re
{

(3−
√

3 i)ϕ1
λ

(
ω1
M

)}
± 3

∣∣ϕ1
λ

(
ω1
M

)∣∣ ,
(31)

induce the normalization functions of the following form [7],

µ±(λ) = 9
∣∣ϕ1
λ

(
ω1
M

)∣∣ (2
∣∣ϕ1
λ

(
ω1
M

)∣∣± Re
{

(1−
√

3 i)ϕ1
λ

(
ω1
M

)})
. (32)

The vector space HM of complex functions f : HM → C is equipped
with a scalar product containing the counting weight function (9). This
honeycomb scalar product is of the following form for any f, g ∈ HM ,

〈f, g〉HM =
∑
a∈HM

ε(a)f(a)g(a). (33)

The orthogonality relations of honeycomb C−functions in the Hilbert space
HM are summarized in Theorem 5.1 in [7]. Using the functions (9), the
orthogonality relations are for any labels λ, λ′ ∈ LM of the form

〈Φ±λ ,Φ
±
λ′〉HM = 12M2hM (λ)µ±(λ)δλλ′ , (34)

〈Φ+
λ ,Φ

−
λ′〉HM = 0. (35)

The forward honeycomb Fourier{Weyl C−transform calculates for any

f ∈ HM its spectral transforms f̂± : LM → C by prescribing for any λ ∈ LM
the value

f̂±(λ) =(12M2hM (λ)µ±(λ))−1
∑
a∈HM

ε(a)f(a)Φ±λ (a). (36)

The backward honeycomb Fourier{Weyl C−transform returns the original
function f ∈ HM ,

f(a) =
∑
λ∈LM

(
f̂+(λ)Φ+

λ (x) + f̂−(λ)Φ−λ (x)
)
, a ∈ HM . (37)

The honeycomb Hartley C−functions Cah±λ are straightforward modi�-
cation of the honeycomb functions (30) that contain the Hartley orbit func-
tions (12). The orthogonality relations of honeycomb Hartley C−functions
are summarized in Theorems 5.2 and 5.3 in [7], respectively. The forward
and backward honeycomb Fourier{Weyl and Hartley{Weyl transforms are of
similar forms.
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X−
[29,1,0] X−

[28,1,1] X−
[27,2,1]

X+
[29,1,0] X+

[28,1,1] X+
[27,2,1]

Figure 1: Lower transversal Hartley modes of the A2 armchair mechanical graphene

vibration model X±
λ , λ ∈ L30 satisfying Neumann boundary conditions. The full set

of transversal modes of H30 contains 2|L30| = 330 elements.

5 Transversal Vibration Models

Application of the multiplication formulas and Fourier{Weyl transforms in
solid state physics are demonstrated on the transversal vibration models of 2D
lattices with Neumann boundary conditions. The transversal A2 armchair
mechanical graphene vibration model is for the case M = 6 depicted in
Figure 2 from [7]. The dots of the point set HM represent the points of
masses m and the equilibrium distance between the two nearest points is
denoted by R0. The honeycomb dots are linked with the nearest neighbours
by the springs of spring constants κ and natural lengths l0. The parameter
η = l0/R0, η < 1 measures the level of stretching of the system.

Transverse displacement scalar function is denoted as ψ(a) ≡ ψ(a, t),
a ∈ HM , where t represents time. The linearized equation of motion for
transversal displacement of any general point a = a1ω1 + a2ω2 = (a1, a2) ∈
HM is simpli�ed via assuming a solution of the mode form

ψ(a, t) = X(a) cos(ωt+ ϕ). (38)

The extension coe�cients (31) determine honeycomb Hartley C−functions
of type II in [7], which are denoted by Cah±λ , λ ∈ LM . Type II honeycomb
C−functions represent amplitudes of the transversal modes (38) of the model
subjected to discretized Neumann boundary conditions,

X±λ (a) = Cah±λ (a), a ∈ HM , λ ∈ LM .

Several lower transversal Hartley modes of the transversal A2 armchair me-
chanical graphene vibration model are for Neumann and Dirichlet boundary
conditions depicted in Figures 1 and 2, respectively.
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X̃−
[28,1,1] X̃−

[27,2,1] X̃−
[26,3,1]

X̃+
[28,1,1] X̃+

[27,2,1] X̃+
[26,3,1]

Figure 2: Lower transversal Hartley modes of the A2 armchair mechanical graphene
vibration model satisfying Dirichlet boundary conditions. The full set of transversal
modes of contains 270 elements.

The eigenfrequencies ω±λ corresponding to the modes X±λ , λ ∈ LM are
given as

ω±λ =

√
κ(1− η)

m

(
3± 1

2

∣∣∣ϕ1
λ

(ω1

M

)∣∣∣).
Spectral analysis of any �xed initial positions and velocities

ψ(a, 0) = ψ0(a), ψ̇(a, 0) = V0(a),

yields via the Hartley version of the forward honeycomb Fourier{Weyl

C−transform (36) of type II from [7] the spectral functions ψ̂C,±0 , V̂ C,±
0 ,

ψ̂C,±0 (λ) =(12M2hM (λ)µ±(λ))−1
∑
a∈HM

ε(a)ψ0(a)X±λ (a),

V̂ C,±
0 (λ) =(12M2hM (λ)µ±(λ))−1

∑
a∈HM

ε(a)V0(a)X±λ (a).

For the Neumann boundary conditions, the additional requirements

ψ̂C,−0 ([M, 0, 0]) = 0 and V̂ C,−
0 ([M, 0, 0]) = 0 eliminate the translation mode

and the resulting solution is of the form

ψ(a, t) =
∑
λ∈LM

(
ψ̂C,+0 (λ) cos(ω+

λ t) +
V̂ C,+

0 (λ)

ω+
λ

sin(ω+
λ t)

)
X+
λ (a)

+
∑

λ∈LM\[M,0,0]

(
ψ̂C,−0 (λ) cos(ω−λ t) +

V̂ C,−
0 (λ)

ω−λ
sin(ω−λ t)

)
X−λ (a).
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6 Conclusions

The discrete Fourier{Weyl transforms on �nite fragments of the Weyl group
invariant lattices are explicitly described in general forms in author's publi-
cations [7,10,12]. Boundary layouts of the point sets are for each root system
dictated by the action of the sign homomorphisms on the generating reec-
tions of the a�ne Weyl group. Besides the honeycomb lattice case, the point
sets underlying in the discrete Fourier{Weyl transforms considered here are
taken as �nite subsets of the weight lattices. The root lattice discrete trans-
forms [8] induce jointly with the weight lattice transforms fundamentally
novel options for transforms on composed grids. The presented honeycomb
lattice case, generated as subtraction of weight and root lattices of the root
system A2 [7], represents this approach for 2D lattices.

The completeness of the discretely orthogonal sets of the Weyl orbit func-
tions in the �nite-dimensional Hilbert spaces is guaranteed by coinciding
cardinalities of the point and label sets [7, 10, 12]. A general algorithm for
deriving the speci�c counting formulas for cardinalities of the point and label
sets, which correspond to the dimensions of the functional Hilbert spaces,
is developed in [10]. Further generalization of the algorithm for deriving
counting formulas from [10] is applied for calculation of a�ne fusion tadpoles
in conformal �eld theory [18]. The discretized versions of product-to-sum
decomposition formulas lead to the dual weight lattice generalization of the
Kac{Walton formula [11].

The properties of the unitary and symmetric Kac{Peterson matrices to-
gether with the a�ne fusion rules and Kac{Walton formulas [4] from confor-
mal �eld theory motivated the development of the weight lattice discretiza-
tion of Weyl orbit functions in [12]. The common argument and label sym-
metries of the weight lattice transforms, dictated by the a�ne Weyl groups,
yield four types of unitary and symmetric generalizations of the Kac{Peterson
matrices. The forms and physical signi�cance of the generalized Kac{Walton
formulas and Kac{Peterson matrices for all ten types of weight lattice dis-
cretized Weyl orbit functions need to be further investigated.

The Weyl orbit functions represent solutions of the mechanical vibration
models constrained by Dirichlet, Neumann or mixed boundary conditions on
the fundamental domain of the a�ne Weyl group. The discrete Fourier{Weyl
and Hartley{Weyl transforms provide spectral analysis of given initial con-
ditions and determine the explicit solutions. A signi�cant advantage of the
current symmetry approach for the honeycomb lattice [7] lies in the form of
the resulting functions. Each solution is determined by a single Hartley hon-
eycomb orbit function, whereas the standard approach yields two di�erent
functional descriptions, one for each congruence class of the honeycomb lat-
tice [3,14,17]. Moreover, permitting an e�cient interpolation [7], the honey-
comb Fourier{Weyl and Hartley{Weyl C− and S−transforms thus represent
suitable generalizations of the standard discrete cosine and sine transforms
to the honeycomb lattice.
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