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Summary
The lecture deals with the development of mathematical models describing turbulent
flows of compressible fluids and their approximation by finite volume method. The
basis of mathematical models are the time-averaged Navier-Stokes equations equipped
with an additional turbulence turbulence model. a model for transition from laminar
to turbulent mode. One specific transition and turbulence model from the literature is
briefly described along with its improvements proposed by the author of the lecture. The
next section describes the approximation of models using the finite volume method. The
approximation of convective terms using the WLSQR method proposed by the author
is described more in details. Next, the construction of a matrix-free implicit symmetric
Gauss-Seidel method is described. Two examples of application of described models and
methods are given in the final part of the lecture. The first example shows that it is
necessary to pay attention both to the choice of mathematical model and its numerical
model approximation. The second case shows a real application of described models and
methods for analysis of the radial turbine of a turbocharger.

Keywords: Compressible flows; Finite volume method; High order method; Implicit
method; Turbulence model; Laminar-turbulent transition



Souhrn
Přednáška se zabývá vývojem matematických modelů popisujících turbulentní proudění
stlačitelné tekutiny a jejich aproximací metodou konečných objemů. Základem matema-
tických modelů jsou přitom časově středované Navierovy-Stokesovy rovnice doplněné o
vhodný model turbulence případně o model zachycující přechod z laminárního to turbu-
lentního režimu. V přednášce je stručně popsán jeden z modelů dostupný v literatuře spolu
s jeho vylepšením navrženým autorem přednášky. V další části je popsána aproximace
modelů pomocí metody konečných objemů. Podrobněji je rozebrána aproximace konvek-
tivních členů pomocí autorem navržené WLSQR metody a konstrukce implicitní metody
založené na symetrické Gaussově-Seidelově metodě. V závěrečné části jsou uvedeny dva
příklady aplikace popisovaných modelů a metod. První z příkladů ukazuje, že je při
simulacích turbulentního proudění nutné věnovat pozornost jak volbě matematického
modelu, tak jeho numerické aproximaci. Druhý případ ukazuje reálnou aplikaci modelů a
metod pro analýzu radiální turbíny turbodmychadla.

Klíčová slova: Stlačitelné proudění; metoda konečných objemů; metoda vysokého řádu;
implicitní metoda; model turbulence; přechod do turbulence

Překlad názvu: Matematické modelování a numerické simulace turbulentního proudění
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Chapter 1
Introduction

The turbulence represents a very difficult and complex problem both for
mathematics as well as for classical physics. Despite the fact that the earliest
description of turbulence due to da Vinci is more than 500 years old, the
exact definition of turbulence is still not known. The da Vinci’s description of
the turbulent motion “...the smallest eddies are almost numberless, and large
things are rotated only by large eddies and not by small ones, and small things
are turned by small eddies and large” is surprisingly modern and describes
well one of the features of turbulent motion: the broadband spectrum of
turbulence with energy cascade. Since then, many attempts to define formally
the turbulence have appeared. Let us mention for example the definition by T.
von Kármán [1]: “Turbulence is an irregular motion which in general makes
its appearance in fluids, gaseous or liquid, when they flow past solid surfaces
or even when neighboring streams of the same fluid flow past or over one
another.” or a more modern definition by Hinze [2]: “Turbulent fluid motion
is an irregular condition of the flow in which the various quantities show a
random variation with time and space coordinates, so that statistically distinct
average values can be discerned.” Very useful definition of turbulence has
been given by Chapman and Tobak [3]: “Turbulence is any chaotic solution
to the 3-D Navier-Stokes equations that is sensitive to initial data and which
occurs as a result of successive instabilities of laminar flows as a bifurcation
parameter is increased through a succession of values.” Although the last
definition is far from being an ultimate answer to the problem of turbulence,
it contains many important observations:. the turbulent motion of the fluid is described by the set of Navier-

Stokes equations,. as such, the turbulent motion is deterministic although it has chaotic
behavior,. turbulent motion (or turbulence) occurs at high Reynolds number.

Taking into account other definition, one can point out also another properties
of the turbulence:. irregularity - although the turbulence is deterministic, the motion is

chaotic, seemingly random,
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.......................................... 1. Introduction

. diffusivity - the turbulence enhances mass, heat, and momentum trans-
fer,. 3D character - turbulent flows have three-dimensional nature with
fluctuating vorticity,. dissipation - turbulent flows are always dissipative with the energy of
large scale structures being transferred to small structured mostly by
inviscid effect (vortex breakup) and the dissipated,. broadband spectrum - the turbulent flow contains an extremely large
range of length and time scales.

There are many directions of research concerning the turbulence including
among others mathematical theory of dynamic systems, new physical theo-
ries concerning e.g. the transition from laminar to turbulent flows, or new
experimental methods. This lecture is devoted especially to the mathematical
modeling of turbulence flows with technical applications. Using all the above
mentioned definitions, one can conclude that an appropriate mathematical
model should be based on the Navier-Stokes equations1 (either for compress-
ible or incompressible fluids). Moreover, from the engineering point of view,
the model should be able to predict statistical quantities (e.g. time averaged
lift of the wing) with reasonable computational effort.

The state of the art methods date back to 1970 when Deardorff [6] proposed
a large eddy simulation (LES) where the effect of largest eddies are resolved
whereas smaller eddies are modeled with a so called sub-grid model. The first
direct numerical simulation (DNS) was achieved by Orzsag and Paterson
in 1972, see [7]. The DNS method solves the Navier-Stokes equations for
whole spectrum of length scales and therefore does not need any additional
model. Unfortunately, both the DNS and LES method are not feasible for
practical computations due to extremely large computational costs. The
spatial requirements for DNS are of the order of Re9/4

T where ReT = u′l/ν is
the turbulent Reynolds number related to the magnitude of velocity fluctua-
tions of the largest vortices u′ and its size l. The total computing costs is
then of the order of Re3

T , see e.g. [8]. Although the LES method promises
slightly lower computational costs, its applications for wall bounded flows is
almost as expensive as the DNS. On the other hand, the Reynolds averaged
Navier-Stokes approach (RANS) proposed e.g. by Launder and Spalding
in [9] provided a viable alternative. The RANS approach assumes an av-
eraged system of Navier-Stokes equations for time (or ensemble) averaged
quantities with an additional model for the so called Reynolds stress tensor
τij = − < u′iu

′
j >.

There are many additional turbulence models with different levels of com-
plexity starting from a very simple algebraic models (see e.g. [10]), through

1Although th Navier-Stokes equations represent a building block for mainstream turbu-
lence modeling research, there are also other promising approaches including the lattice-
Boltzmann method [4], or smoothed particle hydrodynamics [5].
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.......................................... 1. Introduction

more advanced one- or two-equations models (see e.g. [9], [11], [12], [13]) to
the computationally expensive full Reynolds stress models [14].

Although the RANS approach represents a workhorse for many technical
applications, there are known limitations of the modeling approach. The
usability of the modeling can be extended using a hybrid method combining
the LES approach far from solid walls with RANS approach in boundary
layers, see e.g. detached eddy simulation (DES) [15], or partially averaged
Navier-Stokes method (PANS) [16]. These methods becomes feasible thanks
to massive progress in computer power during last years. However the trend
is moving from RANS to LES (or rather hybrid RANS-LES) models, the
importance of RANS approach remains in the solution in near wall region.

The lecture will cover two main topics connected with the applications of
turbulence modeling in engineering. The first one deals with the development
of advanced transition and turbulence models compatible with RANS ap-
proach. The second topic focuses on the numerical solution of Navier-Stokes
or RANS equations especially for the case of high speed flows of compressible
fluids. The last section shows some applications of mentioned advanced
turbulence models and numerical methods in engineering.
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Chapter 2
Advanced turbulence models

The first part of the lecture is devoted to the development of a turbulence
model. We limit ourself to standard RANS approach based on the eddy
viscosity here. Although the eddy viscosity approach has many known
weaknesses, it still represents the mainstream method in turbulence modeling
for engineering purposes due to relatively low computational cost. During
almost 50 years a large number of turbulence models was proposed. Let
us mention e.g. the well known two equation k − ε model [9], one-equation
Spalart-Allmaras model [17], or the two-equation k−ω SST model [12]. Over
the course of years, a number of modifications or new models improving
the predictive capabilities in specific cases have arisen. To date, however, a
universal model has not been developed to capture all aspects of turbulent
flows.

The motion of a compressible fluid is described by the set of Navier-Stokes
equations

∂ρ

∂t
+∇ · (ρ~u) = 0, (2.1)

∂(ρ~u)
∂t

+∇ · (ρ~u⊗ ~u) +∇p = ∇ · ~~τ, (2.2)

∂(ρE)
∂t

+∇ · (ρH~u) = ∇ · (~~τ · ~u)−∇ · ~q, (2.3)

where ρ is the density, ~u is the velocity, p is the pressure, E = e+ (~u · ~u/2)
is the total specific energy, H = E + p/ρ is the total specific enthalpy, ~~τ is
the viscous stress tensor, and ~q is the heat flux. The system is closed by
additional constitutive laws including the equation of state, Fourier’s law, or
Stokes law. The system can be rewritten in simple vectorial form

∂W
∂t

+∇ · ~Fc(W) = ∇ · ~Fv(W,∇W), (2.4)

where W is the vector of conservative variables [ρ, ρ~u, ρE]T , ~Fc are the
convective fluxes (see the left hand side of (2.1)-(2.3)), and ~Fv are the viscous
fluxes (the right hand side of (2.1)-(2.3)).

Although the system (2.4) describes both laminar and turbulent flow
regimes, the direct simulation (DNS) is too expensive for engineering needs.
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.................................2.1. Transition and turbulence model

Therefore one deals either with Reynolds (or Favre) averaged (RANS) or
filtered (LES) equations. In both cases, the RANS or LES equations can
be written in similar form as the equation (2.4) for averaged (or filtered)
quantities with ~~τ and ~q replaced by the effective stress tensor and effective heat
flux and with some additional convection-diffusion equations for turbulence
model. As an example, let’s mention the two-equation k − ω SST model
originally proposed in [12]. The model assumes two additional equations for
turbulent kinetic energy k =< u′iu

′
i > /2 and specific dissipation rate ω (see

[12] for details)

∂(ρk)
∂t

+∇ · (ρk~u) = Pk − β∗ρkω +∇ · [(µ+ σkµt)∇k] , (2.5)

∂(ρω)
∂t

+∇ · (ρω~u) = Pω − βρω2 +∇ · [(µ+ σωµt)∇ω] + CDω. (2.6)

The turbulent viscosity µt = ρa1k/max(a1ω,ΩF2) is then used for modeling
the effective stress tensor

~~τ = 2(µ+ µt)~~S −
2
3ρk

~~I, (2.7)

where ~~S = [∇~u + (∇~u)T ]/2 − (∇ · ~u)~~I/3 is the trace-less strain rate tensor
and µ is the viscosity of the fluid.

2.1 Transition and turbulence model

Turbulence models are in general developed and calibrated for fully turbulent
flows. In the reality, however, the structure of boundary layers is much
more complicated. The flow is in the vicinity of the leading edge of a profile
usually laminar and the turbulence arises later downstream when the Reynolds
number related to stream-wise position reaches certain value - the so called
critical Reynolds number. Unfortunately the value of the critical Reynolds
number is not universal and vary by several orders of magnitude. For an
accurate prediction of flow field a special transition model has to be used.
During last few years, several transition and turbulence models have been
proposed in the literature. Let’s mention the eN model [18], the algebraic
intermittency model [19], the four-equation transition and turbulence model
[20], or the three-equation k − kL − ω model [21].

Let’s focus the attention to latter model proposed in [21]. The model
assumes additional three equations for the turbulent kinetic energy kT , for the
so called laminar kinetic energy kL, and for the specific dissipation rate ω. The
meaning of kT and ω is the same as k and ω in the standard k−ω turbulence
model. The laminar kinetic energy kL expresses laminar fluctuations in the
pre-transitional region (e.g. the so called Tollmien-Schlichting waves). The
model equations for compressible flows are given bellow [21]
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.................................2.1. Transition and turbulence model

∂(ρkT )
∂t

+∇ · (ρkT~u) = ρ(PkT
+RBP +RNAT − kTω −DT ) +

+∇ ·
[(
µ+ ραT

σk

)
∇kT

]
, (2.8)

∂(ρkL)
∂t

+∇ · (ρkL~u) = ρ(PkL
−RBP −RNAT −DL) +∇ · [µ∇kL] ,(2.9)

∂(ρω)
∂t

+∇ · (ρω~u) = ρ

[
Cω1

ω

kT
PkT

+
(
CωR
fW
− 1

)
ω

kT
(RBP +RNAT )

−Cω2ω
2 + Cω3fωαT f

2
W

√
kT
d3

]
+

+∇ ·
[(
µ+ ραT

σω

)
∇ω

]
. (2.10)

The P -terms express the production of kT and kL, D-terms represent the
dissipation, and R-terms model the energy transfer from laminar fluctuation to
turbulent ones for the so called bypass transition RRP and natural transition
RNAT (for details see [21]). We recognized in [22] that the original model
fails to correctly capture the position of the natural transition in the case
of flows with non-zero pressure gradient. The reason is that the original
model detects a critical point for activating RNAT term by using a very
simple criterion based on the stability analysis of flows with zero pressure
gradient. The original model triggers RNAT when ReΩ = d2Ω/ν (here d is the
distance to the wall, Ω is the magnitude of vorticity, and ν is the kinematic
viscosity) reaches a given constant value. The analysis of the stability for
non-zero pressure gradient flows (see e.g. [23]) shows, however, that the loss
of stability depends on the pressure gradient. An adverse pressure gradient in
decelerating flows typically moves the transition upstream whereas a favorable
gradient in accelerating flows delays the transition. Therefore we propose in
[22] a modification of the original model which takes into account the pressure
gradient.

The natural transition is governed in the original model by the RNAT given
as

RNAT = CR,NATβNATkLΩ, (2.11)

βNAT = 1− exp
(
− φNAT
ANAT

)
, (2.12)

φNAT = max
(
ReΩ −

CNAT,crit
fNAT,crit

, 0
)
, (2.13)

fNAT,crit = 1− exp
(
−CNC

√
kLd

ν

)
. (2.14)

The production of laminar kinetic energy kL is PkL
= νT,lS

2 with

νT,l = min
{
fτ,lCl1

Ωλ2
eff

ν

√
kT,lλeff + βTSCl2ReΩd

2Ω, kL + kT,l
2S

}
, (2.15)

6



.................................2.1. Transition and turbulence model

where

ReΩ = d2Ω
ν
, (2.16)

βTS = 1− exp
(
−max(ReΩ − CTS,crit, 0)2

ATS

)
. (2.17)

The key role play parameters CTS,crit and CNAT,crit. The proposed modifica-
tion the dimensionless pressure gradient L as

L̃ = Re2
Ω

ν

U2
e ||~U ||

gradUe · ~U, (2.18)

where Ue =
√

2(ptot − p) is the estimate of free-stream velocity magnitude.
Then the constant values of CTS,crit and CNAT,crit are replaced by

CTS,crit = 536.4
1− 8.963 max(min(L̃, 0),−1.5)

, (2.19)

CNAT,crit = 1250
1− 8.963 max(min(L̃, 0),−1.5)

. (2.20)

The figure 2.1 shows the distribution of pressure and friction coefficient over
NACA-0012 profile at Re = 500 000 and angle of attack α = 0o. The original
model predicts the transition too late downstream with small separation
bubble. On the other hand, the proposed modification captures very well
the transition in comparison both with experimental data [24] and with the
results obtained with XFoil software [25].
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Figure 2.1: Pressure a friction coefficient calculated with and without correlations
for CT S,crit and CNAT,crit and comparison with XFoil.
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Chapter 3
Numerical methods

The second part of the lecture deals with the numerical solution of the RANS
equations (2.1-2.4) with an additional turbulence model. The discretization
is achieved with the standard finite volume method in space combined with
an explicit or implicit time stepping scheme. The solution is approximated
for given time by a piece-wise polynomial function with discontinuities at cell
boundaries and the convective fluxes through cell boundaries are evaluated
using approximate Riemann solvers (see e.g. [26]). The viscous fluxes are
approximated with some variant of central scheme or with a specific variant
of the so called diamond cell [27]. It is well known that the basic (first
order) scheme with a piece-wise constant approximation of the data is spoiled
by a huge amount of numerical viscosity. Therefore, at least a piece-wise
linear representation (formally second order scheme) is needed. On the other
hand, the stability of the numerical method becomes problematic especially
in the case with steep gradients in the solution (shock waves, boundary layers,
etc). Therefore some stabilization technique has to be employed. The most
widespread one in the finite volume framework is the use of limiters, see e.g.
the one-dimensional TVD [28] or NVD [29] limiters, or a multidimensional
limiters compatible with modern unstructured finite volume codes [30]. The
idea of limiters is to switch to a lower order (and more stable) scheme locally
in the vicinity of discontinuities and local extremes. However, with improved
stability, this also results in reduced accuracy. Therefore a class of uniformly
high order essentially non-oscillatory (ENO) schemes has been developed
[31]. The ENO schemes were extended for multidimensional case, see e.g.
[32], although the implementation (especially the stencil selection) is quite
complicated for general unstructured meshes.

3.1 High order WLSQR scheme

In order to simplify the implementation of ENO schemes for unstructured
meshes, we proposed in [33] a scheme based on weighted least square inter-
polation technique. For the sake of simplicity we assume in the following
part only a scalar problem without diffusion terms. Although the method is
then used for approximation of convective terms for full system of Euler or
Navier-Stokes equations.
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...................................3.1. High order WLSQR scheme

As a base for our numerical method we use standard finite volume method
with data located in centers of polygonal cells. The basic low order semi-
discrete method can be written as (see e.g. [34])

|Ωi|
dui(t)
dt

= −
∑
j∈Ni

F(ui(t), uj(t), ~Sij). (3.1)

Here ui(t) is the averaged solution over a control volume (or cell) Ωi, Ni
denotes the set of indices of neighborhoods of Ωi, ~Sij is the scaled normal vector
to the interface between Ωi and Ωj (oriented to Ωj) and F denotes the so called
numerical flux approximating physical flux through the interface between
cells Ωi and Ωj . A higher order method can be obtained by introducing a
cell-wise interpolation P (~x;u) = Pi(~x;u) for ~x ∈ Ωi into the basic formula.
The higher order method is then formally

|Ωi|
dui(t)
dt

= −
∑
j∈Ni

F(Pi(~xij ;u), Pj(~xij ;u), ~Sij), (3.2)

where ~xij is the center of interface between Ωi and Ωj . The semi-discrete
system is then solved either by an explicit or implicit method. Let us focus
the attention to the construction of the piece-wise polynomial approximation
P , th so called reconstruction, of the solution from given cell averages. We
assume that the reconstruction should satisfy following requirements:..1. Conservativity, i.e. the mean value of the interpolant P (x;u) over any

cell Ωi should be equal to cell average of u, in other words∫
Ωi

P (~x;u) d~x = |Ωi|ui. (3.3)..2. Accuracy, i.e. for a given smooth function ũ(~x) with cell averages ui
the interpolant P (~x;u) should approximate w̃:

P (~x;u) = ũ(~x) +O(ho), (3.4)

where h is characteristic mesh size and o is the order of accuracy. This
accuracy requirement is reformulated in the following way: let us pro-
longate Pi(~x;w) over cells in the vicinity of cell Ωi. Then we request for
such cells Ωj ∫

Ωj

Pi(~x;u) d~x = |Ωj |uj . (3.5)..3. Non-oscillatory, i.e. the total variation of the interpolant should be
bounded for h→ 0.

The interpolant Pi(~x;u) is therefore obtained by minimizing error in (3.5)
for Ωj , j ∈ Ni respect to constraint(3.3). In order to mimic weighted ENO
method we introduce data dependent weights:

Pi(~x;u) = arg min
∑
j∈Ni

[
wij

(∫
Ωj

P̃ (~x;u) d~x− |Ωj |uj

)]2

, (3.6)
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...................................3.1. High order WLSQR scheme

where minimum is take over over all linear polynomials P̃ satisfying (3.3).
We propose in [33] weight

wij =
√√√√ h−r∣∣∣ui−uj

h

∣∣∣p + hq
, (3.7)

with p, q, and r being constants (e.g. p = 4, q = −2, r = 3). The theoretical
analysis given in [35] shows that for piece-wise linear reconstruction in 1D
the following results hold:
Lemma 3.1.1. Assume a sufficiently smooth function u(x) having cell aver-
ages ui and weights w 6= 0. Then the piecewise linear WLSQR interpolation
polynomial approximates u(x) with second order of accuracy, i.e.

P (x;u) = u(x) +O(h2). (3.8)

In the case of discontinuous data we analyzed the total variation of the
interpolant for u(x) defined as u(x) = 1 for x < xshock and u(x) = 0 for
x ≥ xshock and we proved for p = 4 and q at least in [−10, 10], that the total
variation of the interpolant is bounded by

TV (P (x;u)) ≤ TV (u) + 4h1+q/p + hp+q. (3.9)

This yields the following lemma:
Lemma 3.1.2. Assume weights with

p+ q ≥ 0, (3.10)
1 + q

p
≥ 0. (3.11)

Then the total variation of the interpolant of data given by a single shock
with constant states at both sides will be bounded independently of h as
h→ 0.

In order to asses properties of the method we made several numerical
experiments with different weights (see [33]) and finally we chose p = 4,
q = −2, r = 3.

The first test deals with the initial value problem for non-linear scalar
equation ut + uux + uuy = 0 with periodic initial condition u0(x, y) =
sin(2πx) cos(2πy). The problem was solved with several successive irregular
meshes for time t = 0.1 s and t = 0.25 s. The figure 3.1 shows the smooth
solution (at the left) and non-smooth solution (at the right).

The figure 3.2 shows the domain, mesh topology, and convergence history
for simple test case concerning an inviscid transonic flows through a 2D
channel. Numerical experiments have been performed using a structured
mesh with 75 × 25, 150 × 50, and 300 × 100 quadrilateral cells and an
unstructured mesh with 22 544 triangles. The fluid enters the domain from
the left, accelerates over the bump, and leaves the domain to the right.
The flow regime corresponds to a transonic flow with inlet Mach number
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Figure 3.1: Smooth and non-smooth solution of 2D IVP for Burgers equation.

first order second order third order
1/N ||e||1 order ||e||1 order ||e||1 order

Smooth data (t = 0.1)
0.1 0.054867 - 0.017641 - 0.012703 -
0.05 0.040623 0.43 0.008839 1.00 0.002686 2.24
0.025 0.024009 0.76 0.001963 2.41 0.000648 2.05
0.0125 0.013414 0.84 0.000379 2.37 0.000116 2.48
0.00625 0.007095 0.92 0.000081 2.23 0.000017 2.77

Non-smooth data (t = 0.25)
0.1 0.112414 - 0.049627 - 0.047704 -
0.05 0.069466 0.69 0.018373 1.43 0.018493 1.36
0.025 0.039077 0.83 0.011098 0.73 0.009987 0.89
0.0125 0.021665 0.85 0.005554 1.00 0.004837 1.05

Table 3.1: Accuracy of the WLSQR scheme for 2D IVP for Burgers equation.

M1 ≈ 0.675. The figure 3.2 at the right shows the convergence history for
an implicit Euler method. One can see that the low order basic methods
converges to steady state faster than higher order methods. Nevertheless
both higher order methods using piece-wise linear (denoted by wlsqr2) and
piece-wise cubic (wlsqr3) reconstructions converge as well close to machine
precision. In general, this is not the case for standard limiters.

The figure 3.3 shows the distribution of Mach number and entropy along
the lower side of the channel. One can see that the proposed method provides
stable resolution of shock wave without any oscillations. The distribution of
entropy shows that the solution obtained with the basic method is heavily
spoiled by numerical diffusion. The numerical diffusion is significantly reduced
for both reconstructions. The table 3.2 summarizes error analysis using the
sequence of three meshes (Π denotes a projection from finer mesh to coarser
one). One can see that the parabolic reconstruction slightly reduces the error
with respect to linear one but the order of accuracy is not as high as expected
due to discontinuity (shock wave) in the date.

Another source of inaccuracy is the polygonal approximation of the domain
boundary. In order to improve further the method, we proposed in [36] a
scheme for problems with curvilinear boundaries. The boundary is (in 2D)
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Figure 3.2: Coarse and unstructured meshes and convergence history for 2D
test channel.
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Figure 3.3: Distribution of Mach number and entropy along lower wall of
GAMM channel; first order (dotted), second order (dashed) and third order
(solid) scheme; coarse (75, rectangles), intermediate (150 × 50 triangles), fine
(300× 100, circles), and unstructured (diamonds) mesh.

Reconstruction ||ρh −Πh
h/2ρh/2||1 ||ρh/2 −Πh/2

h/4ρh/4||1 order
None 6.779 · 10−3 3.620 · 10−3 0.90
Linear 1.353 · 10−3 4.895 · 10−4 1.46
Parabolic 1.079 · 10−3 4.378 · 10−4 1.30

Table 3.2: Estimated orders of convergence for GAMM channel benchmark
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.................................. 3.2. An implicit LU-SGS method

approximated by piece-wise quadratic curves. The figure 3.4 on the left
shows the isolines of Mach number for a so-called Ringleb’s flow problem.
At the right side of the figure 3.4, the distribution of entropy along the wall
obtained with different reconstructions is plotted. The figure summarizes
results obtained with linear (I1) and quadratic (I2) reconstruction, and linear
(B1) and quadratic (B2) approximation of boundary segments. One can see
here quite interesting conclusion that the quadratic scheme combined with
linear approximation of boundary (I2B1) gives worse results than linear-linear
(i.e. I1B1) scheme. Therefore, the piece-wise quadratic reconstruction has to
be combined with at least a pice-wise quadratic approximation of the domain
boundary.
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Figure 3.4: Distribution of Mach number for the Ringleb’s problem (left) and
the distribution of the entropy along the wall (right).

The proposed WLSQR scheme has been extended also for viscous flows
using central approximation of viscous fluxes and finally applied to solution
of several flow problems including transonic turbulent flows over 2D airfoil
profiles, over 3D wings, or through 2D/3D turbine cascades (see e.g. [36]).
The figure 3.5 shows the results of simulation of flow through a 2D model of
turbine cascade. The calculation of piece-wise quadratic reconstruction was
able to capture unsteady effects in the wake, the so called Kármán vortex
street.

3.2 An implicit LU-SGS method

Another problem is an efficient solution method for the semi-discrete system
(3.1). It is well known that the maximal time-step for the explicit Euler or
Runge-Kutta methods is limited by a stability condition. This limitation
becomes very strict especially in the case of turbulent flows with high Reynolds
numbers where the mesh in the vicinity of the wall has to be very fine (at least
in wall normal direction). This makes the use of explicit methods practically
useless. Therefore an implicit method or some other acceleration techniques

13



.................................. 3.2. An implicit LU-SGS method

Figure 3.5: Flow through a 2D model of turbine cascade, isolines of the Mach
number at the left, details of isolines of entropy at the right.

have to be employed.
We use an implicit method obtained by linearization of the semi-discrete

formulation of the finite volume method (3.2). Let’s denote RH the high
order approximation of spatial discretization (the right hand side of (3.2))
and RL the low order approximation (the right hand side of (3.1)) written
for unknowns W, i.e.

RH(W)i = −
∑
j∈Ni

F(Pi(~xij ; W), Pj(~xij ; W), ~Sij), (3.12)

RL(W)i = −
∑
j∈Ni

F(Wi(t),Wj(t), ~Sij). (3.13)

Then the linearized implicit Euler method can be devised ( here ∆Wn =
Wn+1

j −Wn
j ).

|Ωi|
∆Wn

i

∆t = −RH(Wn+1)i ≈ −RH(Wn)i −
∑

j∈Ni∪{i}

∂RL(Wn)i
∂Wj

∆Wn
j ,

(3.14)
and finally[
|Ωi|
∆t I + ∂RL(Wn)i

∂Wi

]
∆Wn

i +
∑
j∈Ni

∂RL(Wn)i
∂Wj

∆Wn
j = −RH(Wn)i. (3.15)

The system of linear equations (3.15) has a large non-symmetric sparse
matrix and it can be solved e.g. with the GMRES method [37]. This method
(i.e. the equation (3.15) combined with GMRES and the incomplete-LU
preconditioning) was formerly used e.g. in [36] and extended to unsteady
flows with moving boundaries in [38]. Although this method has been
successfully used to simulate number of flow problems including transonic
turbulent flows in 3D, it turns out that the construction of the matrix and
the solution of the system with GMRES method is very demanding both
on the computer memory as well as on the CPU. Therefore we develop a
simple matrix-free method based on the lower-upper symmetric Gauss-Seidel
(LU-SGS) iterations, see [39].
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.................................. 3.2. An implicit LU-SGS method

Let Li = {j ∈ Ni : j < i} and Ui = {j ∈ Ni : j > i}. Then the matrix-free
LU-SGS method is realized with following two-step procedure

Di∆W(1)
i = −RH(Wn)i −

1
2
∑
j∈Li

[
∆F(1)

j · ~Sij − λ
∗
ij∆W(1)

j

]
, (3.16)

Di∆Wn
i = Di∆W(1)

i −
1
2
∑
j∈Ui

[
∆Fj · ~Sij − λ∗ij∆Wj

]
, (3.17)

where ∆W(1) = W(1)−Wn, ∆F(1)
j = F(W(1)

j )−F(Wn
j ), ∆Fj = F(Wn+1

j )−
F(Wn

j ), and

Di = |Ωi|
∆t + 1

2
∑
j∈Ni

λ∗ij . (3.18)

The λ∗ij is the spectral radius of Jacobians of fluxes, for details see e.g. [39]
or [40].

The LU-SGS method was implemented into freely available OpenFOAM
package [41]. The figure 3.6 shows the results obtained for the 2D inviscid flow
through a channel from the previous chapter (see e.g. figure 3.2). One can see
that the method provides better resolution of shock waves in comparison to
OpenFOAM solver based on a pressure correction method (SIMPLE scheme).
Moreover, the method is in the case of transonic or supersonic flows more
efficient in terms of CPU time than the SIMPLE scheme.
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Figure 3.6: Distribution of Mach number lower wall and convergence history
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Chapter 4
Applications

In the following section two examples of applications are given. The first one
deals with the simulation of 3D flows through an experimental turbine cascade
whereas the second one is the flow through a turbine part of a turbocharger.

4.1 Flow through an experimental turbine cascade

The first example deals with a transonic turbulent flow through an experi-
mental turbine cascade TR-L-1 corresponding to mid-section of a rotor blade
of last stage of nuclear power plant turbine, see e.g. [42]. The flow through
the prismatic cascade was measured at the Institute of Thermomechanics
of the Czech Academy of Sciences and the results of the computations were
compared to the experimental data. Computations were performed using
OpenFOAM package with an in-house LU-SGS solver described in the section
3.2. The flow enters the computational domain with total pressure, total
temperature, and inlet direction. The average value of static pressure was
prescribed at the outlet. The flow regime is characterized by the Reynolds
number Re = 1.5 · 106 and the isentropic outlet Mach number was M2is = 1.2.
For other parameters see [42]. The computation has been performed using
an unstructured mesh composed of 3.3 · 106 prismatic or hexahedral cells
with near wall refinement corresponding to y+ ≈ 1. The figure 4.1 shows

Figure 4.1: Calculated pressure (color) and energy loss coefficient (grayscale) is
given at the left, the pitch-wise averaged loss coefficient is given at the right.
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.....................4.2. Unsteady turbulent flow through a twin-scroll radial turbine

the distribution of the pressure at the walls and the energy loss coefficient
ζ = 1 − λ2

2/λ
2
2iz (here λ is the dimensionless velocity magnitude related to

critical sound speed). The figure 4.1 at the right compares the span-wise
distribution of the pitch-wise averaged value of energy loss coefficient. One
can see that the results obtained with LU-SGS method in combination with
the k − kL − ω transition and turbulence model agrees very well with the
experimental data whereas the pressure correction method based on SIMPLE
algorithm in combination with standard SST model overestimates the energy
losses. The example show clearly that the choice of a turbulence model and
the details of numerical method can have similar impact to the quality of the
results.

4.2 Unsteady turbulent flow through a twin-scroll
radial turbine

Another application is the simulation of turbulent transonic flow through
a radial twin-scroll turbine part of a turbocharger. The figure 4.2 shows
the domain containing two inlet tubes, the volute, the rotor of the turbine
including the casing, and the outlet tube. The part of computational mesh
is shown at the right side of fig. 4.2. The unsteady simulation with time-
dependent inlet and outlet boundary conditions extracted from simulation of
whole six-piston diesel engine has been performed with the LU-SGS implicit
method, see [43].

Figure 4.2: Domain and the mesh for twin-scroll turbine simulation

The figure 4.3 (left) shows the comparison of numerically predicted ef-
ficiency of the turbine in comparison with results of 1D model calibrated
to experimental data [44] and to the measurements for steady state case.
One can see quite good agreement of simulation results to experimental data
especially at lover blade speed ratios u/c. The right part of figure 4.3 shows
the parallel speedup of the solver with respect to one-core (red) or full node
(blue) configurations.

The results of transient simulation are displayed at the figure 4.4. The
left panel shows the mass flow rate through the turbine outlet in comparison
with the results of specifically tuned 1D model. The right panel compares the
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Figure 4.3: The comparison of predictions of turbine efficiency with experimental
data (left) and the parallel speedup of the solver (right).

mechanical power produced by the turbine, again compared to 1D model [44].
The predicted average mass flow rate with 3D CFD model ṁ = 0.135 kg s−1

differs from the experimental value 0.132 kg s−1 by 2.5 %. The 1D model
predicts the mass flow rate 0.122 kg s−1 which is by 7 % less than the experi-
mental value. The difference between the mass fluxes obtained by 3D CFD
and 1D model causes the difference in predictions of average turbine power
11 159 W and 10 180 W, respectively. The main advantage of the 3D CFD
method over 1D model is that the full 3D simulation does not need any extra
calibration. On the other hand, the 3D method is still very expensive in
terms of computational resources.
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Figure 4.4: Mass flow rate (left) and turbine power (right), comparison of 3D
CFD and 1D model for the case of pulsating flow through a turbine
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Chapter 5
Outlook of the research and education in
the given field

The problem of mathematical modeling and numerical simulation of turbulent
flows spreads across several disciplines including numerical mathematics,
mechanics of fluids, and computer sciences. Applications are found in many
engineering areas including aerospace, turbomachinery, automotive industry,
water management, or environmental sciences. Further research in this at the
Faculty of Mechanical Engineering will concentrate on:. development of advanced turbulence models including the hybrid RANS-

LES approach,. development of transition and turbulence models including some effects
that have been neglected or overseen so far (e.g. the effects of surface
roughness, or improved heat transfer models),. development of efficient high-order numerical methods for computer
simulations of the models of fluids

The research is strongly linked to teaching in master’s and doctoral courses
it the Faculty of Mechanical Engineering. Moreover, the modeling of turbu-
lent flows provides traditional topics for bachelor, master or doctoral thesis.
Student projects range form simple tasks such as e.g. development of 1D
models of flows, to more complex one such as development or improvement
of turbulence models or development of efficient numerical methods.

Research work carried out by both employees and students is often inspired
or directly supported by collaboration with industrial partners such as Doosan
Škoda Power a.s., GE Aviation Czech s.r.o., SIGMA Group a.s., or with the
univerities as University Paris 13, or Univeristy Toulon.
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